Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAM và ΔOBM có
OA=OB
\(\widehat{AOM}=\widehat{BOM}\)
OM chung
Do đó: ΔOAM=ΔOBM
b: Xét ΔOAC và ΔOBD có
\(\widehat{AOC}\) chung
OA=OB
\(\widehat{OAC}=\widehat{OBD}\)
Do đó; ΔOAC=ΔOBD
Suy ra: AC=BD
Bài 3:
Xét 2 \(\Delta\) \(AMO\) và \(BNO\) có:
\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)
\(OA=OB\) (vì O là trung điểm của \(AB\))
\(AM=BN\left(gt\right)\)
=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)
=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)
Mà \(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)
=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)
=> \(M,O,N\) thẳng hàng. (1)
Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)
=> \(OM=ON\) (2 cạnh tương ứng) (2)
Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)
Bài 4:
Chúc bạn học tốt!
Bài 6:
b) Theo câu a) ta có \(\Delta ABD=\Delta HBD.\)
=> \(\widehat{ADB}=\widehat{HDB}\) (2 góc tương ứng).
Ta có: \(\widehat{ADB}+\widehat{HDB}=\widehat{ADH}\left(gt\right)\)
=> \(\widehat{ADB}+\widehat{HDB}=120^0\)
Mà \(\widehat{ADB}=\widehat{HDB}\left(cmt\right)\)
=> \(2.\widehat{ADB}=120^0\)
=> \(\widehat{ADB}=120^0:2\)
=> \(\widehat{ADB}=60^0.\)
=> \(\widehat{ADB}=\widehat{HBD}=60^0\)
Xét \(\Delta ABD\) có:
(định lí tổng ba góc trong một tam giác).
=> \(90^0+\widehat{ABD}+60^0=180^0\)
=> \(150^0+\widehat{ABD}=180^0\)
=> \(\widehat{ABD}=180^0-150^0\)
=> \(\widehat{ABD}=30^0\)
Vậy \(\widehat{ABD}=30^0.\)
Chúc bạn học tốt!
Bài 2:
a) Xét hai tam giác ABD và EBD có:
AB = EB (gt)
\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)
BD: cạnh chung
Vậy: \(\Delta ABD=\Delta EBD\left(c-g-c\right)\)
Suy ra: \(\widehat{BAD}=\widehat{BED}\) (hai góc tương ứng)
Mà \(\widehat{BAD}=90^o\)
Do đó \(\widehat{BED}=90^o\) hay DE \(\perp\) BE.
b) Vì AB = EB (gt)
\(\Rightarrow\) \(\Delta ABE\) cân tại B
\(\Rightarrow\) BD là đường phân giác đồng thởi là đường trung trực
Do đó: BD là đường trung trực của AE. (1)
c) Xét hai tam giác vuông ADH và EDC có:
DA = DE (\(\Delta ABD=\Delta EBD\))
\(\widehat{ADH}=\widehat{EDC}\) (đối đỉnh)
Vậy: \(\Delta ADH=\Delta EDC\left(cgv-gn\right)\)
Suy ra: AH = EC (hai cạnh tương ứng)
Ta có: BH = AB + AH
BC = EB + EC
Mà AB = EB (gt)
AH = EC (cmt)
\(\Rightarrow\) BH = BC
\(\Rightarrow\) \(\Delta BHC\) cân tại B
\(\Rightarrow\) BD là đường phân giác đồng thời là đường cao của HC hay
BD \(\perp\) HC (2)
Từ (1) và (2) suy ra: AE // HC (đpcm).