K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2020

Ta thấy: do tam giác ABC cân nên đường cao AH cũng là đường trung tuyến của tam giác ADE. Suy ra HD=HE.

Xét tam giác ADH vuông tại H. Áp dụng định lí Pytago ta có:

AH2+HD2=AD2

(1,2)2+HD2=42

1,44+HD2=16

HD2=16-1,44=14,56(m)

=>HD=\(\frac{2\sqrt{91}}{5}\)(m)

=>ED=\(\frac{4\sqrt{91}}{5}\)\(\approx\)7,6m

7 tháng 7 2017

11 tháng 12 2023

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{3}{5}\)

nên \(\widehat{B}\simeq36^052'\)

Ta có: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{C}=90^0-36^052'=53^08'\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot7,5=4,5\cdot6=27\)

=>AH=27/7,5=3,6(cm)

ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

=>HB=HC=48/2=24dm

AB=AC=căn AH^2+HC^2=26(dm)

Xét ΔAHB có BM/BA=BE/BH=1/2

nên ME//AH và ME=1/2AH=5dm

Xét ΔCAH có CN/CA=CF/CH

nên NF//AH

=>NF/AH=CF/CH=1/2

=>NF=5dm

ΔAHB vuông tại H có HM là trung tuyến

nên HM=AB/2=13dm

1: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{C}+47^0=90^0\)

=>\(\widehat{C}=43^0\)

Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}\)

=>\(BC=\dfrac{10}{sin43}\simeq14,66\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC=\sqrt{BC^2-AB^2}\simeq10,72\left(cm\right)\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)

=>\(\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot CB}=\dfrac{BH}{CH}\)

Xét ΔHAB vuông tại H có HD là đường cao

nên \(BD\cdot BA=BH^2\)

=>\(BD=\dfrac{BH^2}{AB}\)

Xét ΔHAC vuông tại H có HE là đường cao

nên \(CE\cdot CA=CH^2\)

=>\(CE=\dfrac{CH^2}{AC}\)

\(\dfrac{BD}{EC}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}\)

\(=\left(\dfrac{BH}{CH}\right)^2\cdot\dfrac{AC}{AB}=\left(\dfrac{AB^2}{AC^2}\right)^2\cdot\dfrac{AC}{AB}\)

\(=\dfrac{AB^3}{AC^3}\)