Cho a,b>0 và a+b≤ 4 . Tìm giá trị nhỏ nhất của A = \(\frac{2}{a^2+b^2}+\frac{32}{ab}+2ab\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab\)
\(=2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{34}{ab}+\frac{17}{8}ab-\frac{1}{8}ab\)
\(\ge2.\frac{4}{a^2+b^2+2ab}+2\sqrt{\frac{34}{ab}.\frac{17}{8}ab}-\frac{1}{8}.\frac{\left(a+b\right)^2}{4}\)
\(\Leftrightarrow A\ge2.\frac{4}{\left(a+b\right)^2}+2.\frac{17}{2}-\frac{1}{8}.\frac{4}{4^2}+17-\frac{1}{2}\)
\(\Leftrightarrow A\ge\frac{1}{2}+17-\frac{1}{2}=17\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=2\)
Chúc bạn học tốt !!!
Hình như đề là a2+b2 thôi chứ có cả 1+a2+b2 luôn à? Mình làm theo cái đề có a2+b2 chứ không có +1 nhé!
Áp dụng bất đẳng thức Cauchy Schawrz dạng Engel ta được:
\(B=\frac{1^2}{a^2+b^2}+\frac{1^2}{2ab}\ge\frac{\left(1+1\right)^2}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\)
mà a;b>0 => a+b>0 và \(a+b\le1\Rightarrow\left(a+b\right)^2\le1\) => \(\frac{4}{\left(a+b\right)^2}\ge\frac{4}{1}=4\)
=>\(B=\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge4\Rightarrow B_{min}=4\) <=> a=b=0,5
@Trà My: có 1+a2+b2 thì vẫn có Min vấn đề là chưa đủ trình độ mà còn đòi tự sửa đề
Từ giả thiết ta dễ thấy dấu "=" xảy ra khi a=1, b=3, c=5
Áp dụng BĐT Cauchy Schawrz, ta có:
\(a^2+\frac{b^2}{3}+\frac{c^2}{5}\ge\frac{\left(a+b+c\right)^2}{1+3+5}\Rightarrow2\sqrt{a^2+\frac{b^2}{3}+\frac{c^2}{5}}\ge\frac{2\left(a+b+c\right)}{3}\)
\(\frac{1}{a}+\frac{9}{b}+\frac{25}{c}\ge\frac{\left(1+3+5\right)^2}{a+b+c}\Rightarrow3\sqrt{\frac{1}{a}+\frac{9}{b}+\frac{25}{c}}\ge\frac{27}{\sqrt{a+b+c}}\)
Từ đó, suy ra
\(A\ge\frac{2\left(a+b+c\right)}{3}+\frac{27}{\sqrt{a+b+c}}=\frac{a+b+c}{6}+\frac{a+b+c}{2}+\frac{27}{2\sqrt{a+b+c}}+\frac{27}{2\sqrt{a+b+c}}\ge\frac{9}{6}+3\sqrt[3]{\frac{729}{8}}=15\)
Dấu "=" xảy ra khi a=1, b=3, c=5
Mong là không có gì sai sót!
a+b=2=> a=2-b
\(\Rightarrow\left(1-\frac{4}{a^2}\right)\left(1-\frac{4}{b^2}\right)=\left(\frac{a^2-4}{a^2}\right)\left(\frac{b^2-4}{b^2}\right)=\frac{\left(2-b\right)^2-4}{\left(2-b\right)^2}.\frac{b^2-4}{b^2}\)
=\(\frac{b^2-2b-8}{b^2-2b}\)
đặt A=\(\frac{b^2-2b-8}{b^2-2b}\)
đkxđ \(\hept{\begin{cases}b\ne0\\b\ne2\end{cases}}\)
\(\Leftrightarrow Ab^2-2bA=b^2-2b-8\)
\(\Leftrightarrow\left(A-1\right)b^2-2\left(A-1\right)b+8=0\)
nếu A=1 => 8=0 (vô lý)
nếu A khác 1 pt có nghiệm khi \(\Delta\ge0\Leftrightarrow\left[-2\left(A-1\right)\right]^2-4\left(A-1\right).8\ge0\)
\(4A^2-40A+36\ge0\Leftrightarrow A^2-10A+9\ge0\Leftrightarrow\hept{\begin{cases}A\le1\\A\ge9\end{cases}}\)
GTNN A=9 dấu "=" <=> a=b=1
bạn ơi mình đặt nhầm B thành A rồi bn tự sửa lại nhé!
\(B=\left(1-\frac{4}{a^2}\right)\left(1-\frac{4}{b^2}\right)=\left(1-\frac{2}{a}\right)\left(1-\frac{2}{b}\right)\left(1+\frac{2}{a}\right)\left(1+\frac{2}{b}\right)\)
\(=\frac{\left(2-a\right)\left(2-b\right)\left(a+2\right)\left(b+2\right)}{a^2b^2}=\frac{ab.\left(a+2\right)\left(b+2\right)}{a^2b^2}=\frac{ab+2\left(a+b\right)+4}{ab}=\frac{8}{ab}+1\)
Theo BĐT Cauchy thì : \(a+b\ge2\sqrt{ab}\Rightarrow ab\le\frac{\left(a+b\right)^2}{4}\)
Suy ra : \(A\ge\frac{8}{\frac{2^2}{4}}+1=9\).Đẳng thức xảy ra khi a = b = 1/2
Vậy ......................................