Cho biểu thức: A= 32+34+36+...+320-200n với n ϵ N, chứng tỏ A⋮10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = ( 1 + 3^2) + (3^4 + 3^6) + ... + (3^2016 + 3 ^2018 ) + 3 ^ 2020
= 10 + 3^4(1+3^2) + .... + 3^2016.(1+3^2) + 3^2020
= 10.(1+3^4+...+3^2016) + 3^2020
Mà : 3^n có tận cùng là : 1,3,9,7
Do đó 3 ^2020 không chia hết cho 10
Lại có 10.(1+3^4+...+3^2016) chia hết cho 10
=> A không chia hết cho 10
A=(1+32)+(34+36)+ ... + (32018+32020)
=(1+32)+ 34(1+32)+....+32018(1+32)
=(1+32) (1+34+....+32018)
=10 (1+34+....+32018) ⋮10 ( do 10 ⋮10)
Vậy A=1+32+34+36+ ... +32020 ⋮ 10 (đpcm)
Bài 1:
1) \(9A=3^3+3^5+...+3^{113}\)
\(\Rightarrow8A=9A-A=3^3+3^5+...+3^{113}-3-3^3-...-3^{111}=3^{113}-3\)
\(\Rightarrow A=\dfrac{3^{113}-3}{8}\)
2) \(9B=3^4+3^6+...+3^{202}\)
\(\Rightarrow8B=9B-B=3^4+3^6+...+3^{202}-3^2-3^4-...-3^{200}=3^{202}-3^2=3^{202}-9\)
\(\Rightarrow B=\dfrac{3^{202}-9}{8}\)
3) \(25C=5^3+5^5+...+5^{101}\)
\(\Rightarrow24C=25C-C=5^3+5^5+...+5^{101}-5-5^3-...-5^{99}=5^{101}-5\)
\(\Rightarrow C=\dfrac{5^{101}-5}{24}\)
4) \(25D=5^4+5^6+...+5^{102}\)
\(\Rightarrow24D=25D-D=5^4+5^6+...+5^{102}-5^2-5^4-...-5^{100}=5^{102}-25\)
\(\Rightarrow D=\dfrac{5^{102}-25}{24}\)
Bài 2:
a) Gọi d là UCLN(2n+1,n+1)
\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\n+1⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\2n+2⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+2\right)-\left(2n+1\right)⋮d\Rightarrow1⋮d\)
Vậy 2n+1 và n+1 là 2 số nguyên tố cùng nhau
\(\Rightarrow\dfrac{2n+1}{n+1}\) là phân số tối giản
b) Gọi d là UCLN(2n+3,3n+4)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+4⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+8⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\Rightarrow1⋮d\)
\(\Rightarrow\dfrac{2n+3}{3n+4}\) là phân số tối giản
\(A=3+3^2+3^3+...+3^{60}\)
\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{57}+3^{58}+3^{59}+3^{60}\right)\)
\(\Rightarrow A=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{57}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=\left(3+3^5+...+3^{57}\right)\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40\left(3+3^5+...+3^{57}\right)⋮40\)
A=3+32+33+...+360
A=3+32+33+...+360⇒A=(3+32+33+34)+(35+36+37+38)+...+(357+358+359+360)⇒A=(3+32+33+34)+(35+36+37+38)+...+(357+358+359+360)
⇒A=3(1+3+32+33)+35(1
P = a(b - a) - b(a + c) - bc
= ab - a² - ab - bc - bc
= -a² - 2bc
= -(a² + 2bc)
Do a, b, c ∈ ℕ và a ≠ 0
⇒ a² + 2bc > 0
⇒ -(a² + 2bc) < 0
Vậy P luôn âm
b)Ta có:5333=(53)111=125111<243111=(35)111=3555
Ta có:2400<2800=4400
\(A=3^2+3^4+3^6+...+3^{20}-200n\)
\(=3^2\left(1+3^2\right)+3^6\left(1+3^2\right)+...+3^{18}\left(1+3^2\right)-200n\)
\(=10\left(3^2+3^6+...+3^{18}-20n\right)⋮10\)