GPT: \(x^2+\frac{81x^2}{\left(x+9\right)^2}=40\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x≠-9
Đầu bài → x².(x+9)²+81x²=40(x+9)²
<=> x²(x²+18x+81+81)=40(x+9)²
<=> x⁴+18x².(x+9)-40.(x+9)²=0
<=> [x²+20(x+9)][x²-2(x+9)]=0
\(\Leftrightarrow\)x²+20x+180=0 hoặc x²-2x+18=0...
ĐKXĐ: \(x\ne-9\)
\(x^2-\frac{18x^2}{x+9}+\frac{\left(9x\right)^2}{\left(x+9\right)^2}+\frac{18x^2}{x+9}-40=0\)
\(\Leftrightarrow\left(x-\frac{9x}{x+9}\right)^2+\frac{18x^2}{x+9}-40=0\)
\(\Leftrightarrow\left(\frac{x^2}{x+9}\right)^2+\frac{18x^2}{x+9}-40=0\)
Đặt \(\frac{x^2}{x+9}=a\Rightarrow a^2+18a-40=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-20\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{x^2}{x+9}=2\\\frac{x^2}{x+9}=-20\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-18=0\\x^2+20x+180=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1+\sqrt{19}\\x=1-\sqrt{19}\end{matrix}\right.\)
ĐKXĐ: ...
\(\Leftrightarrow x^2+\frac{81x^2}{\left(x+9\right)^2}-\frac{18x^2}{x+9}+\frac{18x^2}{x+9}-4=0\)
\(\Leftrightarrow\left(x-\frac{9x}{x+9}\right)^2+\frac{18x^2}{x+9}-40=0\)
\(\Leftrightarrow\left(\frac{x^2}{x+9}\right)^2+\frac{18x^2}{x+9}-40=0\)
Đặt \(\frac{x^2}{x+9}=t\)
\(\Leftrightarrow t^2+18t-40=0\)
Đến đây chắc bạn tự giải tiếp được rồi
\(\left(1\right)\Leftrightarrow2x-3x^2+11-33x=6x-4-15x^2+10x\)
\(\Leftrightarrow12x^2-47x+15=0\)
\(\Delta=47^2-4.12.15=1489,\sqrt{\Delta}=\sqrt{1489}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{47+\sqrt{1489}}{24}\\x=\frac{47-\sqrt{1489}}{24}\end{cases}}\)
\(\left(2\right)\Leftrightarrow\frac{\left(x-3\right)^2-\left(x+3\right)^2}{x^2-9}=\frac{-5}{x^2-9}\)
\(\Leftrightarrow\left(x-3\right)^2-\left(x+3\right)^2=-5\)
\(\Leftrightarrow x^2-6x+9-x^2-6x-9=-5\)
\(\Leftrightarrow-12x=-5\Leftrightarrow x=\frac{5}{12}\)
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\frac{x-2}{x+1}=a\\\frac{x+2}{x-1}=b\end{matrix}\right.\) pt trở thành:
\(5a^2-44b^2+12ab=0\) \(\Leftrightarrow\left(a-2b\right)\left(5a+22b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\5a=-22b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\frac{x-2}{x+1}=\frac{2x+4}{x-1}\\\frac{5x+10}{x-1}=\frac{-22x-44}{x-1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x-2\right)-\left(2x-4\right)\left(x+1\right)=0\\\left(5x+10\right)\left(x-1\right)+\left(22x+44\right)\left(x-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
\(x^2+\frac{81x^2}{\left(x+9\right)^2}=40^{^{\left(1\right)}}\)
\(ĐK:x\ne-9\)
\(\left(1\right)\Leftrightarrow x^2-2.x.\frac{9x}{x+9}+\frac{81x^2}{\left(x+9\right)^2}+\frac{18x^2}{x+9}=40\)
\(\Leftrightarrow\left(x-\frac{9x}{x+9}\right)^2+\frac{18x^2}{x+9}=40\)
\(\Leftrightarrow\left(\frac{x^2}{x+9}\right)^2+18.\frac{x^2}{x+9}=0\)
Đặt \(\frac{x^2}{x+9}=t\)ta có:
\(t^2-18t-40=0\)
\(\Leftrightarrow\left(t+2\right)\left(t-20\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+2=0\\t-20=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}t=-2\\t=20\end{cases}}\)
................
rồi tự thay vào nha