Ti'nh :
A = 1/2 + 1/2^2 + 1/2^3 + 1/2^4 + ..... + 1/2^13 + 1/2^14
ti`m x
a) ( 7x - 3 )^2012 = ( 3 - 7x ) ^2010
b) ( 4^x+2 + 4^x+1 + 4^x ) / 21 = ( 3^2x + 3^2x+2 + 3^2x+1 ) /31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\left(x\ne\pm2\right)\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)+\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{2\left(x^2+2\right)}{x^2-4}\)
\(\Leftrightarrow\frac{2x^2+4}{x^2-4}=\frac{2x^2+4}{x^2-4}\)
Vậy phương trình này có vô số nghiệm x thỏa mãn trừ x khác 2 và -2
b)
ĐKXĐ: \(x\notin\left\{2;3;\dfrac{1}{2}\right\}\)
Ta có: \(\dfrac{x+4}{2x^2-5x+2}+\dfrac{x+1}{2x^2-7x+3}=\dfrac{2x+5}{2x^2-7x+3}\)
\(\Leftrightarrow\dfrac{x+4}{\left(x-2\right)\left(2x-1\right)}+\dfrac{x+1}{\left(x-3\right)\left(2x-1\right)}=\dfrac{2x+5}{\left(2x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow\dfrac{\left(x+4\right)\left(x-3\right)}{\left(x-2\right)\left(2x-1\right)\left(x-3\right)}+\dfrac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1\right)}=\dfrac{\left(2x+5\right)\left(x-2\right)}{\left(2x-1\right)\left(x-3\right)\left(x-2\right)}\)
Suy ra: \(x^2-3x+4x-12+x^2-2x+x-2=2x^2-4x+5x-10\)
\(\Leftrightarrow2x^2-14=2x^2+x-10\)
\(\Leftrightarrow2x^2-14-2x^2-x+10=0\)
\(\Leftrightarrow-x-4=0\)
\(\Leftrightarrow-x=4\)
hay x=-4(nhận)
Vậy: S={-4}
1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)
=-27x^3-18x^2+4x+10
2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27
=7x^3+37x^2+46x+33
5:
\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)
\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)
=7x^3-48x^2+8x-35
f: Ta có: \(16x^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(4x-3x-3\right)\left(4x+3x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(7x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{7}\end{matrix}\right.\)
c , d giải nốt:
c) 2x + 3/6 = 7x - 13/15
=> (2x + 3) . 15 = (7x - 13) x 6
=> 30x +45 = 42x - 78
=> 30x - 42x = -78 - 45
=> -12x = -123
=> x = 41/4
d) 2-x/4 = 3x - 1/ - 3
=> (2-x) . -3 = 4. (3x - 1)
=> -6 - (-3x) = 12x - 4
(-6) + 4 = 12x - - (-3x)
=> -2 = 9x
=> x = -2/9
a, 7\(x\) - \(x\) = 521 : 519 + 3.22.7
6\(x\) = 53 + 3.4.7
6\(x\) = 125 + 12.7
6\(x\) = 125 + 84
6\(x\) = 209
\(x\) = 209 : 6
\(x\) = \(\dfrac{209}{6}\)
b; 11\(x\) - 7\(x\) + 34 : 33 = 54 + 2\(x\)
4\(x\) + 3 = 625 + 2\(x\)
4\(x\) - 2\(x\) = 625 - 3
2\(x\) = 622
\(x\) = 622 : 2
\(x\) = 311
c; 75 - 5.(\(x-3\))3 = 700
5.(\(x\) - 3)3 = 700 - 75
5.(\(x\) - 3)3 = - 625
(\(x\) - 30)3 = - 625 : 5
(\(x\) - 30)3 = - 125
(\(x-3\))3 = (-5)3
\(x\) - 3 = - 5
\(x\) = - 5 + 3
\(x\) = -2
d, 3.(2\(x\) - 1)2 = 75
(2\(x\) - 1)2 = 75 : 3
(2\(x\) - 1)2 = 25
\(\left[{}\begin{matrix}2x-1=-5\\2x-1=5\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=-5+1\\2x=5+1\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=-4\\2x=6\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)