Chứng minh rằng: P = \(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{99}{5^{99}}< \frac{5}{16}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng \(D=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}< \frac{1}{16}\)
\(A=\frac{1}{5^2}+\frac{2}{5^3}+.....+\frac{99}{5^{100}}\)
\(\Leftrightarrow5A=\frac{1}{5}+\frac{2}{5^2}+......+\frac{99}{5^{99}}\)
\(\Leftrightarrow5A-A=\left(\frac{1}{5}+\frac{2}{5^2}+....+\frac{99}{5^{99}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{99}{5^{100}}\right)\)
\(\Leftrightarrow4A=\frac{1}{5}+\frac{1}{5^2}+......+\frac{1}{5^{99}}-\frac{99}{5^{100}}\)
Đặt : \(H=\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{99}}\)
\(\Leftrightarrow5H=1+\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{98}}\)
\(\Leftrightarrow5H-H=\left(1+\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{98}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\right)\)
\(\Leftrightarrow4H=1-\frac{1}{5^{99}}\)
\(\Leftrightarrow H=\frac{1}{4}-\frac{1}{4.5^{99}}< \frac{1}{4}\)
\(\Leftrightarrow4A< B< \frac{1}{4}\)
\(\Leftrightarrow A< \frac{1}{16}\left(đpcm\right)\)
\(P=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{99}{5^{99}}\)
\(5P=1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{99}{5^{98}}\)
\(\Rightarrow4P=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}-\frac{99}{5^{99}}=A-\frac{99}{5^{99}}\)
\(A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}\)
\(5A=5+1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{97}}\)
\(\Rightarrow4A=5-\frac{1}{5^{98}}< 5\Rightarrow A< \frac{5}{4}\)
\(4P=A-\frac{99}{5^{99}}< A< \frac{5}{4}\Rightarrow P< \frac{5}{16}\)