K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2022

a, \(\Delta=m^2-4\left(-4\right)=m^2+16\)> 0 

Vậy pt luôn có 2 nghiệm pb 

b, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-4\end{matrix}\right.\)

Ta có \(\left(x_1+x_2\right)^2-2x_1x_2=5\)

Thay vào ta được \(m^2-2\left(-4\right)=5\Leftrightarrow m^2+3=0\left(voli\right)\)

 

14 tháng 3 2022

Bạn ơi, mình có thể hỏi câu c được không ạ? Nếu không được thì không sao, mình cảm ơn câu trả lời của bạn ạ ^-^ chúc bạn một ngày tốt lành nhé.

25 tháng 7 2023

a) Điều kiện để phương trình có hai nghiệm trái dấu là :

\(\left\{{}\begin{matrix}m\ne0\\\Delta phẩy>0\\x_1.x_2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m^2+4m+4-m^2+3m>0\\\dfrac{m-3}{m}< 0\end{matrix}\right.\)

\(\Rightarrow0< m< 3\)

b) Để phương trình có 2 nghiệm phân biệt thì : \(\Delta\) phẩy  > 0

\(\Rightarrow m< 4\)

Ta có : \(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}=2\) 

\(\Leftrightarrow x_1^2+x_2^2=2x_1^2.x_2^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=2x_1^2.x_2^2\)

Theo Vi-ét ta có : \(x_1+x_2=\dfrac{-2\left(m-2\right)}{m};x_1.x_2=\dfrac{m-3}{m}\)

\(\Rightarrow\dfrac{4\left(m-2\right)^2}{m^2}-2.\dfrac{m-3}{m}=2.\dfrac{\left(m-3\right)^2}{m^2}\)

\(\Leftrightarrow m=1\left(tm\right)\)

Vậy...........

 

 

 

25 tháng 7 2023

a) \(mx^2+2\left(m-2\right)x+m-3=0\left(1\right)\)

Để \(\left(1\right)\) có hai nghiệm trái dấu \(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m-2\right)^2-m\left(m-3\right)>0\\\dfrac{m-3}{m}< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4m+4-m^2-3m>0\\0< m< 3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7m+4>0\\0< m< 3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{4}{7}\\0< m< 3\end{matrix}\right.\) \(\Leftrightarrow0< m< 3\)

b) \(\dfrac{1}{x^2_1}+\dfrac{1}{x^2_2}=2\Leftrightarrow\dfrac{x^2_1+x_2^2}{x^2_1.x^2_2}=2\) \(\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-4x_1.x_2}{x^2_1.x^2_2}=2\)

\(\Leftrightarrow\left(\dfrac{x_1+x_2}{x_1.x_2}\right)^2-\dfrac{4}{x_1.x_2}=2\)

\(\Leftrightarrow\left(\dfrac{\dfrac{2\left(2-m\right)}{m}}{\dfrac{m-3}{m}}\right)^2-\dfrac{4}{\dfrac{m-3}{m}}=2\)

\(\Leftrightarrow\left(\dfrac{2\left(2-m\right)}{m-3}\right)^2-\dfrac{4m}{m-3}=2\)

\(\Leftrightarrow4\left(2-m\right)^2-4m\left(m-3\right)=2.\left(m-3\right)^2\)

\(\Leftrightarrow4\left(4-4m+m^2\right)-4m^2+12=2.\left(m^2-6m+9\right)\)

\(\Leftrightarrow16-16m+4m^2-4m^2+12=2m^2-12m+18\)

\(\Leftrightarrow2m^2+4m-10=0\)

\(\Leftrightarrow m^2+2m-5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1+\sqrt[]{6}\\m=-1-\sqrt[]{6}\end{matrix}\right.\) \(\Leftrightarrow m=-1+\sqrt[]{6}\left(\Delta>0\Rightarrow m>-\dfrac{4}{7}\right)\)

 

14 tháng 3 2022

a) Xét pt \(x^2-\left(2m-3\right)x+m^2-3m=0\)

Ta có \(\Delta=\left[-\left(2m-3\right)^2\right]-4.1\left(m^2-3m\right)\)\(=4m^2-12m+9-4m^2+12m\)\(=9>0\)

Vậy pt đã cho luôn có 2 nghiệm phân biệt với mọi m.

Câu b mình nhìn không rõ đề, bạn sửa lại nhé.

\(\text{Δ}=\left(-2m\right)^2-4\left(m^2-1\right)=4m^2-4m^2+1=1>0\)

Vậy: Phương trình luôn có hai nghiệm phân biệt với mọi m

Theo đề, ta có: 

\(\left\{{}\begin{matrix}3x_1-x_2=0\\x_1+x_2=2m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1=2m\\x_1+x_2=2m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{1}{2}m\\x_2=\dfrac{3}{2}m\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=m^2-1\)

\(\Leftrightarrow m^2\cdot\dfrac{3}{4}-m^2=-1\)

\(\Leftrightarrow m^2=4\)

hay \(m\in\left\{2;-2\right\}\)

NV
22 tháng 4 2021

\(\Delta=m^2+12>0\) ; \(\forall m\)

\(\Rightarrow\) Khi \(n=0\) thì pt có nghiệm với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=n-3\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1-x_2=1\\x_1^2-x_2^2=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=1\\\left(x_1+x_2\right)\left(x_1-x_2\right)=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=1\\x_1+x_2=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=4\\x_2=3\end{matrix}\right.\)

Thế vào hệ thức Viet: \(\left\{{}\begin{matrix}4+3=-m\\4.3=n-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=-7\\n=15\end{matrix}\right.\)

1: \(\text{Δ}=\left(2m-2\right)^2-4\left(m-3\right)\)

\(=4m^2-8m+4-4m+12\)

\(=4m^2-12m+16\)

\(=\left(2m-3\right)^2+7>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

2: Theo vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=m-3\end{matrix}\right.\)

Ta có: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=x_1x_2\)

\(\Leftrightarrow x_1^2+x_2^2=\left(m-3\right)^2\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(m-3\right)-\left(m-3\right)^2=0\)

\(\Leftrightarrow4m^2-16m+4-2m+6-m^2+6m-9=0\)

\(\Leftrightarrow3m^2-12m+1=0\)

\(\text{Δ}=\left(-12\right)^2-4\cdot3\cdot1=144-12=132>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{12-2\sqrt{33}}{6}=\dfrac{6-\sqrt{33}}{3}\\x_2=\dfrac{6+\sqrt{33}}{3}\end{matrix}\right.\)

20 tháng 5 2022

Δ=\(\left(2m-1\right)^2\)−4(m−3) pk ạ...

5 tháng 7 2021

a, x = 3 , x= -1

b, m = 3 , m = 1

8 tháng 4 2021

a, \(x^2-4x+3=0\Leftrightarrow x^2-x-3x+3=0\)

\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

Vậy tập nghiệm của phương trình là S = { 1 ; 3 } 

b, Ta có : \(\Delta=\left(2m+2\right)^2-4\left(2m-5\right)=4m^2+8m+4-8m+20=4m^2+24>0\forall m\)

Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-2\\x_1x_2=\frac{c}{a}=2m-5\end{cases}}\)

Ta có : \(\left(x_1^2-2mx_1-x_2+2m-3\right)\left(x_2^2-2mx_2-x_1+2m-3\right)=19.1=1.19\)

TH1 : \(\hept{\begin{cases}x_1^2-2mx_1-x_2+2m-3=19\\x_2^2-2mx_2-x_1+2m-3=1\end{cases}}\)

Lấy phương trình (1) + (2) ta được : 

\(x_1^2+x_2^2-2mx_1-2mx_2-x_2-x_1+4m-6=20\)

mà \(\left(x_1+x_2\right)^2=4m^2+8m+4\Rightarrow x_1^2+x_2^2=4m^2+8m+4-2x_1x_2\)

\(=4m^2+8m+4-2\left(2m-5\right)=4m^2+4m-6\)

\(\Leftrightarrow4m^2+4m-6-2m\left(2m-2\right)-\left(2m-2\right)+4m-6=20\)

\(\Leftrightarrow4m^2+4m-6-4m^2+4m-2m+2+4m-6=20\)

\(\Leftrightarrow10m=30\Leftrightarrow m=3\)tương tự với TH2, nhưng em ko chắc lắm vì dạng này em chưa làm bao giờ 

30 tháng 6 2021

x=1 và x=3

3 tháng 4 2021

a. Khi m=2 thì  (1) có dạng :

\(x^2-6\left(2-1\right)x+9\left(2-3\right)=0\\ \Leftrightarrow x^2-6x-9=0\\ \Leftrightarrow\left(x-3\right)^2=18\Leftrightarrow x-3=\pm\sqrt{18}\\ \Leftrightarrow x=3\pm3\sqrt{2}\)

Vậy với m=2 thì tập nghiệm của phương trình là \(S=\left\{3\pm3\sqrt{2}\right\}\)

 

b. Coi (1) là phương trình bậc 2 ẩn x , ta có:

\(\text{Δ}'=\left(-3m+3\right)^2-1\cdot9\left(m-3\right)=9m^2-18m+9-9m+27\\ =9m^2-27m+36=\left(3m-\dfrac{9}{2}\right)^2+\dfrac{63}{4}>0\)

Nên phương trình (1) luôn có 2 nghiệm x1,x2 thỏa mãn:

\(\left\{{}\begin{matrix}x_1+x_2=6\left(m-1\right)\\x_1x_2=9\left(m-3\right)\end{matrix}\right.\left(2\right)\)

 \(x_1+x_2=2x_1x_2\\ \Leftrightarrow6\left(m-1\right)=18\left(m-3\right)\Leftrightarrow m-1=3m-9\\ \Leftrightarrow2m=8\Leftrightarrow m=4\)

Vậy m=4

b) Ta có: \(\text{Δ}=\left[-6\left(m-1\right)\right]^2-4\cdot1\cdot9\left(m-3\right)\)

\(=\left(6m-6\right)^2-36\left(m-3\right)\)

\(=36m^2-72m+36-36m+108\)

\(=36m^2-108m+144\)

\(=\left(6m\right)^2-2\cdot6m\cdot9+81+63\)

\(=\left(6m-9\right)^2+63>0\forall m\)

Suy ra: Phương trình luôn có hai nghiệm phân biệt với mọi m

Áp dụng hệ thức Vi-et, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=6\left(m-1\right)=6m-6\\x_1\cdot x_2=9\left(m-3\right)=9m-27\end{matrix}\right.\)

Ta có: \(x_1+x_2=2x_1\cdot x_2\)

\(\Leftrightarrow6m-6=2\left(9m-27\right)\)

\(\Leftrightarrow6m-6-18m+54=0\)

\(\Leftrightarrow-12m+48=0\)

\(\Leftrightarrow-12m=-48\)

hay m=4

Vậy: m=4