-4x2 +x +30 =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$4x^2-2x-1=0$
$\Leftrightarrow [(2x)^2-2.2x.\frac{1}{2}+(\frac{1}{2})^2]-\frac{5}{4}=0$
$\Leftrightarrow (2x-\frac{1}{2})^2=\frac{5}{4}$
$\Rightarrow 2x-\frac{1}{2}=\pm \frac{\sqrt{5}}{2}$
$\Leftrightarrow 2x=\frac{1\pm \sqrt{5}}{2}$
$\Rightarrow x=\frac{1\pm \sqrt{5}}{4}$
$x^4-4x^2-32=0$
$\Leftrightarrow (x^2-2)^2-36=0$
$\Leftrightarrow (x^2-2-6)(x^2-2+6)=0$
$\Leftrightarrow (x^2-8)(x^2+4)=0$
Vì $x^2+4>0$ với mọi $x$ nên $x^2-8=0$
$\Leftrightarrow x=\pm 2\sqrt{2}$
a) Ta có: \(4x^2-2x-1=0\)
\(\Delta=\left(-2\right)^2-4\cdot4\cdot\left(-1\right)=4+16=20\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{2-2\sqrt{5}}{8}=\dfrac{1-\sqrt{5}}{4}\\x_2=\dfrac{2+2\sqrt{5}}{8}=\dfrac{1+\sqrt{5}}{4}\end{matrix}\right.\)
b) Ta có: \(x^4-4x^2-32=0\)
\(\Leftrightarrow x^4-8x^2+4x^2-32=0\)
\(\Leftrightarrow x^2=8\)
hay \(x\in\left\{2\sqrt{2};-2\sqrt{2}\right\}\)
a) 2(x + 3)(x – 4) = (2x – 1)(x + 2) – 27
⇔ 2(x2 – 4x + 3x – 12) = 2x2 + 4x – x – 2 – 27
⇔ 2x2 – 2x – 24 = 2x2 + 3x – 29
⇔ -2x – 3x = 24 – 29
⇔ - 5x = - 5 ⇔ x = -5/-5 ⇔ x = 1
Tập nghiệm của phương trình : S = {1}
b) x2 – 4 – (x + 5)(2 – x) = 0
⇔ x2 – 4 + (x + 5)(x – 2) = 0 ⇔ (x – 2)(x + 2 + x + 5) = 0
⇔ (x – 2)(2x + 7) = 0 ⇔ x – 2 = 0 hoặc 2x + 7 = 0
⇔ x = 2 hoặc x = -7/2
Tập nghiệm của phương trình: S = {2; -7/2 }
c) ĐKXĐ : x – 2 ≠ 0 và x + 2 ≠ 0 (khi đó : x2 – 4 = (x – 2)(x + 2) ≠ 0)
⇔ x ≠ 2 và x ≠ -2
Quy đồng mẫu thức hai vế :
Khử mẫu, ta được : x2 + 4x + 4 – x2 + 4x – 4 = 4
⇔ 8x = 4 ⇔ x = 1/2( thỏa mãn ĐKXĐ)
Tập nghiệm của phương trình : S = {1/2}
d) ĐKXĐ : x – 1 ≠ 0 và x + 3 ≠ 0 (khi đó : x2 + 2x – 3 = (x – 1)(x + 3) ≠ 0)
⇔ x ≠ 1 và x ≠ -3
Quy đồng mẫu thức hai vế :
Khử mẫu, ta được : x2 + 3x + x + 3 – x2 + x – 2x + 2 + 4 = 0
⇔ 3x = -9 ⇔ x = -3 (không thỏa mãn ĐKXĐ)
Tập nghiệm của phương trình : S = ∅
\(2\left(x+3\right)\left(x-4\right)=\left(2x-1\right)\left(x+2\right)-27\)
\(< =>2\left(x^2-x-12\right)=2x^2+3x-2-27\)
\(< =>2x^2-2x-24=2x^2+3x-2-27\)
\(< =>5x=-24+29=5\)
\(< =>x=\frac{5}{5}=1\)
\(x^6+2x^3+1=0\)
\(\Leftrightarrow\left(x^3\right)^2+2x^3+1=0\)
\(\Leftrightarrow\left(x^3+1\right)^2=0\)
\(\Leftrightarrow x^3=\left(-1\right)^3\)
\(\Leftrightarrow x=-1\)
___________
\(x\left(x-5\right)=4x-20\)
\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
_____________
\(x^4-2x^2=8-4x^2\)
\(\Leftrightarrow x^2\left(x^2-2\right)+\left(4x^2-8\right)=0\)
\(\Leftrightarrow x^2\left(x^2-2\right)+4\left(x^2-2\right)=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow x^2=2\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
_______________
\(\left(x^3-x^2\right)-4x^2+8x-4\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(a,\Leftrightarrow x\left(2x-7\right)+2\left(2x-7\right)=0\\ \Leftrightarrow\left(x+2\right)\left(2x-7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{7}{2}\end{matrix}\right.\\ b,\Leftrightarrow x\left(x^2-9\right)=0\\ \Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ c,\Leftrightarrow\left(2x-1\right)\left(2x+1\right)-2\left(2x-1\right)^2=0\\ \Leftrightarrow\left(2x-1\right)\left(2x+1-4x+2\right)=0\\ \Leftrightarrow\left(2x-1\right)\left(-2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\\ d,\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
(4x^2-9)(x+2)=0
⇔ (4x^2-9)=0 -> (2x-3)(2x+3)=0 -> 2x-3=0 -> x=3/2
2x+3=0 -> x= -3/2
(x+2)=0 -> x=-2
Vậy tập nghiệm S={ 3/2;-3/2;-2}
\(\Leftrightarrow4x^2\left(x-1\right)-\left(x-1\right)=0\Leftrightarrow\left(2x-1\right)\left(2x+1\right)\left(x-1\right)=0\Leftrightarrow x=\dfrac{1}{2};x=-\dfrac{1}{2};x=1\)
\(4x^3-4x^2-x+1=0\)
<=>\(\left(2x+1\right)\left(x-1\right)\left(2x-1\right)=0\)
<=>\(\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=1\\x=\dfrac{1}{2}\end{matrix}\right.\)
(x-3)2 - 4x2 = 0
( x-3 - 2x)( x-3 +2x) =0
(-x-3)(3x-3)=0
\(\left[{}\begin{matrix}-x-3=0\\3x-3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-3\\3x=3\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-3\\x=3:3\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
Kết luận x \(\in\) { -3;1}
\(-4x^2+x+30=0\)
Ta có: \(\Delta=1^2+4.4.30=481,\sqrt{\Delta}=\sqrt{481}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-1+\sqrt{481}}{-8}=\frac{1-\sqrt{481}}{8}\\x=\frac{-1-\sqrt{481}}{-8}=\frac{1+\sqrt{481}}{8}\end{cases}}\)