Tìm 2 số dương biết tổng, hiệu, tích của chúng tỉ lệ nghịch với 20,120,16
HELP ME
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hai số đó là : \(x\) và \(y\)
Theo đề bài , ta có :
\(35.\left(x+y\right)=210\left(x-y\right)=12\left(xy\right)\)
\(\Rightarrow35.\left(x+y\right)=210.\left(x-y\right)\) \(\left(1\right)\)
\(210.\left(x-y\right)=12\left(xy\right)\) \(\left(2\right)\)
Từ \(\left(1\right)\Rightarrow35x+35y=210x-210y\)
\(\Rightarrow35y+210y=210x-35x\)
\(\Rightarrow245y=175x\)
\(\Rightarrow x=\frac{\left(245y\right)}{175}=\frac{\left(7y\right)}{5}\) \(\left(3\right)\)
Thay vào \(\left(2\right)\) , ta được :
\(210.\left(x-y\right)=12\left(xy\right)\)
\(\Rightarrow210.\left[\frac{\left(7y\right)}{5-y}\right]=12.\left[\frac{7y}{5y}\right]\)
\(\Rightarrow210.\left[\frac{\left(2y\right)}{5}\right]=\left[\frac{\left(84y\right)}{5}\right].y\)
\(\Rightarrow\frac{\left(420y\right)}{5}=\frac{84y^2}{5}\)
\(\Rightarrow\left[\frac{\left(420y\right)}{5}\right]-\left[\frac{84y^2}{5}\right]=0\)
\(\Rightarrow\frac{\left[84.\left(5-y\right)\right]}{5}=0\)
\(\Rightarrow y=0\) ( vô lí )
\(\Rightarrow5-y=0\)
\(\Rightarrow y=5\)
Thay vào \(\left(3\right)\) , ta có :
\(x=\frac{\left(7y\right)}{5}=\frac{\left(7.5\right)}{5}=\frac{37}{5}=7\)
Vậy \(x=7;y=5\)
Gọi 2 số phải tìm là a và b
Theo bài ra ta có: 30.(a+b)=120.(a-b)=a.b.16 =>15.(a+b)=60.(a-b)=8.a.b
Ta có:15.a+15.b=60.a-60.b =>75.b=45.a =>a/5=b/3 =>a=(5/3).b
Thay a=(5/3).b ta được 15.[(5/3).b+b)]=8.(5/3).b.b
=>40.b=(40/3).b2
=>b=(1/3).b2 =>b=3
=>a=3.(5/3)=5
Vạy a=5;b=3
Gọi 2 số dương cần tìm là a và b
Ta có: \(\left(a+b\right).30=\left(a-b\right).120=16.ab\)
\(\left(a+b\right).30=\left(a-b\right).120\Rightarrow\frac{a+b}{a-b}=\frac{120}{30}=4\)
\(\Rightarrow a+b=4a-4b\Rightarrow b+4b=4a-a\Rightarrow5b=3a\Rightarrow a=\frac{5}{3}b\)
\(\left(a+b\right).30=16ab\)
\(\Rightarrow\left(\frac{5}{3}b+b\right).30=16.\frac{5}{3}b.b\)
\(\Rightarrow80b=\frac{80}{3}b^2\)
\(\Rightarrow80b\left(1-\frac{1}{3}b\right)=0\Rightarrow1-\frac{1}{3}b=0\left(b>0\right)\Rightarrow b=3\)
Tìm được \(a=\frac{5}{3}b=\frac{5}{3}.3=5\)
Vậy 2 số cần tìm là 5 và 3.
Theo đề bài ta có: \(35\left(x+y\right)=210\left(x-y\right)=12xy\)
\(\Rightarrow\frac{35\left(x+y\right)}{420}=\frac{210\left(x-y\right)}{420}=\frac{12xy}{420}\)
\(\Rightarrow\frac{x+y}{12}=\frac{x-y}{2}=\frac{xy}{35}\left(1\right)\)
Áp dụng TCDTSBN ta có:
\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)+\left(x-y\right)}{12+2}=\frac{2x}{14}=\frac{x}{7}\left(2\right)\)
\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)-\left(x-y\right)}{12-2}=\frac{2y}{10}=\frac{y}{5}\left(3\right)\)
Từ (1) và (2) => \(\frac{xy}{35}=\frac{x}{7}\Rightarrow\frac{xy}{35}=\frac{xy}{7y}\Rightarrow y=5\)
Từ (1) và (3) => \(\frac{xy}{35}=\frac{y}{5}\Rightarrow\frac{xy}{35}=\frac{xy}{5x}\Rightarrow x=7\)