K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2018

ko bik

4 tháng 11 2016

Gọi hai số đó là : \(x\)\(y\)

Theo đề bài , ta có :

\(35.\left(x+y\right)=210\left(x-y\right)=12\left(xy\right)\)

\(\Rightarrow35.\left(x+y\right)=210.\left(x-y\right)\) \(\left(1\right)\)

\(210.\left(x-y\right)=12\left(xy\right)\) \(\left(2\right)\)

Từ \(\left(1\right)\Rightarrow35x+35y=210x-210y\)

 

\(\Rightarrow35y+210y=210x-35x\)

\(\Rightarrow245y=175x\)

\(\Rightarrow x=\frac{\left(245y\right)}{175}=\frac{\left(7y\right)}{5}\) \(\left(3\right)\)

Thay vào \(\left(2\right)\) , ta được :

\(210.\left(x-y\right)=12\left(xy\right)\)

\(\Rightarrow210.\left[\frac{\left(7y\right)}{5-y}\right]=12.\left[\frac{7y}{5y}\right]\)

\(\Rightarrow210.\left[\frac{\left(2y\right)}{5}\right]=\left[\frac{\left(84y\right)}{5}\right].y\)

\(\Rightarrow\frac{\left(420y\right)}{5}=\frac{84y^2}{5}\)

\(\Rightarrow\left[\frac{\left(420y\right)}{5}\right]-\left[\frac{84y^2}{5}\right]=0\)

\(\Rightarrow\frac{\left[84.\left(5-y\right)\right]}{5}=0\)

\(\Rightarrow y=0\) ( vô lí )

\(\Rightarrow5-y=0\)

\(\Rightarrow y=5\)

Thay vào \(\left(3\right)\) , ta có :

\(x=\frac{\left(7y\right)}{5}=\frac{\left(7.5\right)}{5}=\frac{37}{5}=7\)

Vậy \(x=7;y=5\)

21 tháng 12 2016

sai một lỗi

31 tháng 12 2015

Gọi 2 số phải tìm là a và b

Theo bài ra ta có: 30.(a+b)=120.(a-b)=a.b.16          =>15.(a+b)=60.(a-b)=8.a.b

Ta có:15.a+15.b=60.a-60.b  =>75.b=45.a        =>a/5=b/3       =>a=(5/3).b

Thay a=(5/3).b ta được         15.[(5/3).b+b)]=8.(5/3).b.b

                                           =>40.b=(40/3).b2

                                           =>b=(1/3).b2   =>b=3

=>a=3.(5/3)=5

Vạy a=5;b=3

           

23 tháng 11 2018

Gọi 2 số dương cần tìm là a và b

Ta có: \(\left(a+b\right).30=\left(a-b\right).120=16.ab\)

\(\left(a+b\right).30=\left(a-b\right).120\Rightarrow\frac{a+b}{a-b}=\frac{120}{30}=4\)

\(\Rightarrow a+b=4a-4b\Rightarrow b+4b=4a-a\Rightarrow5b=3a\Rightarrow a=\frac{5}{3}b\)

\(\left(a+b\right).30=16ab\)

\(\Rightarrow\left(\frac{5}{3}b+b\right).30=16.\frac{5}{3}b.b\)

\(\Rightarrow80b=\frac{80}{3}b^2\)

\(\Rightarrow80b\left(1-\frac{1}{3}b\right)=0\Rightarrow1-\frac{1}{3}b=0\left(b>0\right)\Rightarrow b=3\)

Tìm được \(a=\frac{5}{3}b=\frac{5}{3}.3=5\)

Vậy 2 số cần tìm là 5 và 3.

20 tháng 1 2018

Theo đề bài ta có: \(35\left(x+y\right)=210\left(x-y\right)=12xy\)

\(\Rightarrow\frac{35\left(x+y\right)}{420}=\frac{210\left(x-y\right)}{420}=\frac{12xy}{420}\)

\(\Rightarrow\frac{x+y}{12}=\frac{x-y}{2}=\frac{xy}{35}\left(1\right)\)

Áp dụng TCDTSBN ta có:

\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)+\left(x-y\right)}{12+2}=\frac{2x}{14}=\frac{x}{7}\left(2\right)\) 

\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)-\left(x-y\right)}{12-2}=\frac{2y}{10}=\frac{y}{5}\left(3\right)\)

Từ (1) và (2) => \(\frac{xy}{35}=\frac{x}{7}\Rightarrow\frac{xy}{35}=\frac{xy}{7y}\Rightarrow y=5\)

Từ (1) và (3) => \(\frac{xy}{35}=\frac{y}{5}\Rightarrow\frac{xy}{35}=\frac{xy}{5x}\Rightarrow x=7\)