K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2017

vì \(x^2-5x+7=x^2-\frac{2.5}{2}x+\frac{25}{4}+\frac{3}{4}=\left(x-\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)nên phương trình xác định với mọi \(x\)

TXD :\(D=R\)Ta có :

\(A\left(x^2-5x+7\right)=x^2\Leftrightarrow x^2\left(A-1\right)-5Ax+7A=0\)

  1. Nếu \(A=1\Rightarrow5x=7\Leftrightarrow x=\frac{7}{5}\)tức biểu thức nhận được giá trị là \(1\)
  2. Nếu \(A\ne1\)Thì phương trình có nghiệm khi : \(\Delta\ge0\Leftrightarrow25A^2-4\left(A-1\right)7A\ge0\Rightarrow A\left(28-3A\right)\ge0\Leftrightarrow0\le A\le\frac{28}{3}\)Vậy nên \(0\le A\le\frac{28}{3}\)
  •             \(A_{Min}=0\Leftrightarrow\frac{x^2}{x^2-5x+7}=0\Leftrightarrow x=0\)
  •             \(A_{Max}=\frac{28}{3}\Leftrightarrow\frac{x^2}{x^2-5x+7}=\frac{28}{3}\Leftrightarrow x=\frac{-5A}{2\left(A-1\right)}\Leftrightarrow x=\frac{14}{5}\)
7 tháng 6 2017

Sorry em ko bt làm  em mới học lớp 5 thui

3 tháng 4 2016

Sau khi rút gọn thì ta được \(A=x\left(2x+3\right)\)

                                  \(\Leftrightarrow A=2x^2+3x\)

                                  \(\Leftrightarrow A=2\left(x^2+2.\frac{3}{2}x+\frac{9}{4}\right)-2.\frac{9}{4}\)

                                  \(\Leftrightarrow A=2\left(x+\frac{3}{2}\right)^2-\frac{9}{2}\)

Vì \(2\left(x+\frac{3}{2}\right)^2\ge0\) nên \(2\left(x+\frac{3}{2}\right)^2-\frac{9}{2}\ge\frac{-9}{2}\)

Do đó \(A=2\left(x+\frac{3}{2}\right)^2-\frac{9}{2}\ge\frac{-9}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(2\left(x+\frac{3}{2}\right)^2=0\)

                       \(\Leftrightarrow\)\(\left(x+\frac{3}{2}\right)^2=0\)

                       \(\Leftrightarrow\)\(x+\frac{3}{2}=0\)

                       \(\Leftrightarrow\)\(x=\frac{-3}{2}\)

\(VậyMinA=\frac{-9}{2}tạix=\frac{-3}{2}\)

12 tháng 11 2018

a, ĐKXĐ: \(\hept{\begin{cases}5x+25\ne0\\x\ne0\\x^2+5x\ne0\end{cases}\Rightarrow\hept{\begin{cases}5\left(x+5\right)\ne0\\x\ne0\\x\left(x+5\right)\ne0\end{cases}\Rightarrow}}\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)

b, \(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)

\(=\frac{x^3}{5x\left(x+5\right)}+\frac{5\left(2x-10\right)\left(x+5\right)}{5x\left(x+5\right)}+\frac{\left(50+5x\right).5}{5x\left(x+5\right)}\)

\(=\frac{x^3+10\left(x-5\right)\left(x+5\right)+250+25x}{5x\left(x+5\right)}\)

\(=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)

c, \(P=-4\Rightarrow\frac{x+5}{5}=-4\Rightarrow x+5=-20\Rightarrow x=-25\)

d, \(\frac{1}{P}\in Z\Rightarrow\frac{5}{x+5}\in Z\Rightarrow5⋮\left(x+5\right)\Rightarrow x+5\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\Rightarrow x\in\left\{-10;-6;-4;0\right\}\)

Mà x khác 0 (ĐKXĐ của P) nên \(x\in\left\{-10;-6;-4\right\}\)

21 tháng 9 2019

a) \(ĐKXĐ:\hept{\begin{cases}5x+25\ne0\\x\ne0\\x^2+5x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)

b) \(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)

\(P=\frac{x^3}{5x\left(x+5\right)}+\frac{10x^2-250}{5x\left(x+5\right)}+\frac{250+25x}{5x\left(x+5\right)}\)

\(P=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)

c) \(P=4\Leftrightarrow\frac{x+5}{5}=4\Leftrightarrow x+5=20\Leftrightarrow x=15\)

d) \(\frac{1}{P}=\frac{5}{x+5}\in Z\Leftrightarrow5⋮x+5\)

\(\Leftrightarrow x+5\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Lập bảng nhé

e) \(Q=P+\frac{x+25}{x+5}=\frac{x+30}{x+5}=1+\frac{25}{x+5}\)

\(Q_{min}\Leftrightarrow\frac{25}{x+5}_{min}\)

2 tháng 2 2018

2, TC: \(\frac{5x^2-4x+4}{x^2}=\frac{4x^2+x^2-4x+4}{x^2}\)\(=\frac{4x^2}{x^2}+\frac{\left(x-2\right)^2}{x^2}=4+\frac{\left(x-2\right)^2}{x^2}\)

Ta có \(\frac{\left(x-2\right)^2}{x^2}\ge0\forall x\left(x\ne0\right)\)\(\Rightarrow4+\frac{\left(x-2\right)^2}{x^2}\ge4\)

Vậy GTNN của A là 4 tại \(\frac{\left(x-2^2\right)}{x^2}=0\Rightarrow x=2\)

20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?