Giải ptrình
x^2+(x+2)(11x - 7)=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4-3x^2=5\left(3-x^2\right)\)
=>\(x^2\left(x^2-3\right)-5\left(3-x^2\right)=0\)
=>\(x^2\left(x^2-3\right)+5\left(x^2-3\right)=0\)
=>\(\left(x^2-3\right)\left(x^2+5\right)=0\)
=>\(x^2-3=0\)
=>\(x^2=3\)
=>\(x=\pm\sqrt{3}\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)-5\left(x-2\right)=10+x^2-4\)
\(\Leftrightarrow x^2+3x+2-5x+10-10-x^2+4=0\)
=>-2x+6=0
hay x=3(nhận)
đk : x khác 2 ; -2
<=> x^2 + 3x + 2 - 5x + 10 = 10 + x^2 - 4
<=> x^2 - 2x + 12 = x^2 + 6
<=> -2x + 6 =0 <=> x = 3 (tm)
Khi m=0 thì pt sẽ là \(x^2+2x-5=0\)
=>(x+1)2=6
hay \(x\in\left\{\sqrt{6}-1;-\sqrt{6}-1\right\}\)
\(x^2+\left(x+2\right)\left(11x-7\right)=4\)
\(\Leftrightarrow x^2+\left(11x^2+15x-14\right)=4\)
\(\Leftrightarrow12x^2+15x-18=0\)
\(\Leftrightarrow12x^2+24x-9x-18=0\)
\(\Leftrightarrow12x\left(x+2\right)-9\left(x+2\right)=0\)
\(\Leftrightarrow\left(12x-9\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}12x-9=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-2\end{cases}}}\)
Vậy nghiệm của phương trình là : \(S=\left\{-2;\frac{3}{4}\right\}\)
\(ĐKXĐ:x\ne2\)
\(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)
\(\Leftrightarrow\frac{x+5}{3\left(x-2\right)}-\frac{1}{2}-\frac{2x-3}{2\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{2\left(x+5\right)-3\left(x-2\right)-3\left(2x-3\right)}{6\left(x-2\right)}=0\)
\(\Leftrightarrow2x+10-3x+6-6x+9=0\)
\(\Leftrightarrow-7x+25=0\)
\(\Leftrightarrow x=\frac{25}{7}\)(tm)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{25}{7}\right\}\)
đk : x khác -3 ; 3
\(\Rightarrow-12+2x+6+3x-9=x^2-9\Leftrightarrow5x-15=x^2-9\)
\(\Leftrightarrow x^2-5x+6=0\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\Leftrightarrow x=2;x=3\left(ktm\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y=6m+4\\3x-2y=11-m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y=6m+4\\5x=5m+15\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=m+3\\y=2m-1\end{matrix}\right.\)
b. \(P=\left(m+3\right)^2-\left(2m-1\right)^2\)
\(P=-3m^2+10m+10=-3\left(m-\dfrac{5}{3}\right)^2+\dfrac{55}{3}\le\dfrac{55}{3}\)
Dấu "=" xảy ra khi \(m=\dfrac{5}{3}\)
x 2 + (x + 2)(11x – 7) = 4
⇔ x 2 – 4 + (x + 2)(11x – 7) = 0
⇔ (x + 2)(x – 2) + (x + 2)(11x – 7) = 0
⇔ (x + 2)[(x – 2) + (11x – 7)] = 0
⇔ (x + 2)(x – 2 + 11x – 7) = 0
⇔ (x + 2)(12x – 9) = 0 ⇔ x + 2 = 0 hoặc 12x – 9 = 0
x + 2 = 0 ⇔ x = - 2
12x – 9 = 0 ⇔ x = 0,75
Vậy phương trình có hai nghiệm x = - 2 hoặc x = 0,75
\(ĐK:x\ne-1;2\)
\(\Rightarrow\dfrac{2\left(x-2\right)-\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow2\left(x-2\right)-\left(x+1\right)=3x-11\)
\(\Leftrightarrow2x-4-x-1-3x+11=0\)
\(\Leftrightarrow-2x+6=0\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
ĐKXĐ:\(\left\{{}\begin{matrix}x\ne-1\\x\ne2\end{matrix}\right.\)
\(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow\dfrac{2\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{x+1}{\left(x+1\right)\left(x-2\right)}-\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{2x-4-x-1-3x+11}{\left(x+1\right)\left(x-2\right)}=0\\ \Rightarrow-2x+6=0\\ \Leftrightarrow x=3\left(tm\right)\)
\(x^2+\left(x+2\right)\left(11x--7\right)=4\)
\(x^2+\left(x+2\right)\left(11x+7\right)-4=0\)
\(x^2+11x^2+7x+22x+14-4=0\)
\(12x^2+29x+10=0\)
\(\left(x+\frac{5}{12}\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{5}{12}=0\\x+2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{5}{12}\\x=-2\end{cases}}\)
Vậy \(x\in\left\{-2;-\frac{5}{12}\right\}\)
\(x^2+\left(x+2\right)\left(11x-7\right)=4\)
\(\Leftrightarrow x^2+\left(x+2\right)\left(11x-7\right)-4=0\)
\(\Leftrightarrow\left(x^2-4\right)+\left(x+2\right)\left(11x-7\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(12x-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\12x-9=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\12x=9\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=\frac{3}{4}\end{cases}}\)
Vậy pt có tập \(n_0\)\(S=\left\{-2;\frac{3}{4}\right\}\)