![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(ĐKXĐ:x\ne2\)
\(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)
\(\Leftrightarrow\frac{x+5}{3\left(x-2\right)}-\frac{1}{2}-\frac{2x-3}{2\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{2\left(x+5\right)-3\left(x-2\right)-3\left(2x-3\right)}{6\left(x-2\right)}=0\)
\(\Leftrightarrow2x+10-3x+6-6x+9=0\)
\(\Leftrightarrow-7x+25=0\)
\(\Leftrightarrow x=\frac{25}{7}\)(tm)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{25}{7}\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+\left(x+2\right)\left(11x-7\right)=4\)
\(\Leftrightarrow x^2+\left(11x^2+15x-14\right)=4\)
\(\Leftrightarrow12x^2+15x-18=0\)
\(\Leftrightarrow12x^2+24x-9x-18=0\)
\(\Leftrightarrow12x\left(x+2\right)-9\left(x+2\right)=0\)
\(\Leftrightarrow\left(12x-9\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}12x-9=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-2\end{cases}}}\)
Vậy nghiệm của phương trình là : \(S=\left\{-2;\frac{3}{4}\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^4-3x^2=5\left(3-x^2\right)\)
=>\(x^2\left(x^2-3\right)-5\left(3-x^2\right)=0\)
=>\(x^2\left(x^2-3\right)+5\left(x^2-3\right)=0\)
=>\(\left(x^2-3\right)\left(x^2+5\right)=0\)
=>\(x^2-3=0\)
=>\(x^2=3\)
=>\(x=\pm\sqrt{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)-5\left(x-2\right)=10+x^2-4\)
\(\Leftrightarrow x^2+3x+2-5x+10-10-x^2+4=0\)
=>-2x+6=0
hay x=3(nhận)
đk : x khác 2 ; -2
<=> x^2 + 3x + 2 - 5x + 10 = 10 + x^2 - 4
<=> x^2 - 2x + 12 = x^2 + 6
<=> -2x + 6 =0 <=> x = 3 (tm)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow\frac{x^2+2x-x+2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Leftrightarrow x^2+x-2=2\)
\(\Leftrightarrow x^2+x-4=0\)
Làm nốt
\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\cdot\left(x-2\right)}\)
\(\frac{x\cdot\left(x+2\right)-\left(x-2\right)}{x\cdot\left(x-2\right)}=\frac{2}{x\cdot\left(x-2\right)}\)
\(\frac{x^2+2x-x+2}{x\cdot\left(x-2\right)}=\frac{2}{x\cdot\left(x-2\right)}\)
\(x^2+x+2=2\)
\(x^2+x=0\)
\(x\cdot\left(x+1\right)=0\)
\(\hept{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\Leftrightarrow x^2+11x^2-7x+22x-14-4=0\)
\(\Leftrightarrow12x^2+15x^2-18=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-1\right)=0\)
=>x=-6 hoặc x=1
b: \(x^4+3x^2-4=0\)
\(\Leftrightarrow\left(x^2+4\right)\left(x^2-1\right)=0\)
=>x=1 hoặc x=-1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+\left(x+2\right)\left(11x--7\right)=4\)
\(x^2+\left(x+2\right)\left(11x+7\right)-4=0\)
\(x^2+11x^2+7x+22x+14-4=0\)
\(12x^2+29x+10=0\)
\(\left(x+\frac{5}{12}\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{5}{12}=0\\x+2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{5}{12}\\x=-2\end{cases}}\)
Vậy \(x\in\left\{-2;-\frac{5}{12}\right\}\)
\(x^2+\left(x+2\right)\left(11x-7\right)=4\)
\(\Leftrightarrow x^2+\left(x+2\right)\left(11x-7\right)-4=0\)
\(\Leftrightarrow\left(x^2-4\right)+\left(x+2\right)\left(11x-7\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(12x-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\12x-9=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\12x=9\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=\frac{3}{4}\end{cases}}\)
Vậy pt có tập \(n_0\)\(S=\left\{-2;\frac{3}{4}\right\}\)