K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2019

\(\Leftrightarrow\frac{x^2+2x-x+2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)

\(\Leftrightarrow x^2+x-2=2\)

\(\Leftrightarrow x^2+x-4=0\) 

Làm nốt

20 tháng 10 2019

\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\cdot\left(x-2\right)}\)

\(\frac{x\cdot\left(x+2\right)-\left(x-2\right)}{x\cdot\left(x-2\right)}=\frac{2}{x\cdot\left(x-2\right)}\)

\(\frac{x^2+2x-x+2}{x\cdot\left(x-2\right)}=\frac{2}{x\cdot\left(x-2\right)}\)

\(x^2+x+2=2\)

\(x^2+x=0\)

\(x\cdot\left(x+1\right)=0\)

\(\hept{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}}\)

27 tháng 6 2016

oho

12 tháng 7 2023

Mày nhìn cái chóa j

23 tháng 3 2020

AYUASGSHXHFSGDB HAGGAHAJF

13 tháng 3 2019

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left[\left(x^2+\frac{1}{x^2}\right)-\left(x+\frac{1}{x}\right)^2\right]=\left(x+4\right)^2.ĐKXĐ:x\ne0\)

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}-x^2-2-\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2-8\left(x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow8\left[\left(x+\frac{1}{x}\right)^2-\left(x^2+\frac{1}{x^2}\right)\right]=\left(x+4\right)^2\)

\(\Leftrightarrow8\left(x^2+2+\frac{1}{x^2}-x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow16=\left(x+4\right)^2\)

\(\Leftrightarrow x^2+8x+16=16\)

\(\Leftrightarrow x^2+8x=0\)

\(\Leftrightarrow x\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(l\right)\\x=-8\left(n\right)\end{cases}}\)

V...\(S=\left\{-8\right\}\)

^^

13 tháng 3 2019

bạn ghi sai đề ở chỗ \(\left(x+\frac{1}{x}\right)^2\)chứ ko phải \(\left(x+\frac{1}{x^2}\right)^2\)nhé

7 tháng 3 2017

\(\left(x+4\right)^2\)nhấn lộn.mn giúp đỡ

27 tháng 4 2019

ĐK: x khác 0
Đặt \(x+\frac{1}{x}=a\)\(\Rightarrow\left(x+\frac{1}{x}\right)^2=a^2\Leftrightarrow a^2=x^2+\frac{1}{x^2}+2\cdot x\cdot\frac{1}{x}\Leftrightarrow a^2-2=x^2+\frac{1}{x^2}\)

Có:

\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2\)
\(=8a^2+4\left(a^2-2\right)^2-4\left(a^2-2\right)a^2\)
\(=8a^2+4\left(a^4-4a^2+4\right)-4\left(a^4-2a^2\right)\)
\(=8a^2+4a^4-16a^2+16-4a^4+8a^2=16\)

Thay \(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=16\)

  vào phương trình, ta có:  \(\left(x-4\right)^2=16\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=-4\\x-4=4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=8\end{cases}}\)Mà điều kiện x khác 0 nên x=8

Vậy phương trình có nghiệm x=8

NV
13 tháng 4 2020

\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}+2\right)=\left(x+4\right)^2\)

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2-8\left(x^2+\frac{1}{x^2}\right)=\left(x+2\right)^2\)

\(\Leftrightarrow8\left(x^2+\frac{1}{x^2}+2\right)-8\left(x^2+\frac{1}{x^2}\right)=\left(x+2\right)^2\)

\(\Leftrightarrow\left(x+2\right)^2=16\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)