Tìm giá trị của a,b biết: \(a^2-2a+6b+b^2=-10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(N=a^2+b^2+2a-b-\dfrac{1}{4}\)
\(=a^2+2a+1+b^2-b+\dfrac{1}{4}-\dfrac{3}{2}\)
\(=\left(a+1\right)^2+\left(b-\dfrac{1}{2}\right)^2-\dfrac{3}{2}\ge-\dfrac{3}{2}\forall a,b\)
Dấu '=' xảy ra khi a=-1 và \(b=\dfrac{1}{2}\)
`A=16x^2+8x+5`
`=16x^2+8x+1+4`
`=(4x+1)^2+4>=4`
Dấu "=" xảy ra khi `4x+1=0<=>x=-1/4`
`B=x^2-x`
`=x^2-x+1/4-1/4`
`=(x-1/2)^2-1/4>=-1/4`
Dấu "=" xảy ra khi `x=1/2`
`C=a^2-2a+b^2+6b+2021`
`=a^2-2a+1+b^2+6b+9+2011`
`=(a-1)^2+(b+3)^2+2011>=2011`
Dấu "=" xảy ra khi \(\begin{cases}a=1\\b=-3\\\end{cases}\)
\(\Leftrightarrow a^2-2a+1+b^2+6b+9=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b+3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-1=0\\b+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-3\end{matrix}\right.\)
Đáp án D
Bài toán trở thành: Tìm M nằm trên đường tròn giao tuyến của mặt cầu (S) và mặt phẳng (P) sao cho KM lớn nhất
a2 - 2a + 6b + b2 = -10
<=> a2 - 2a + 6b + b2 + 10 = 0
<=> ( a2 - 2a + 1 ) + ( b2 + 6b + 9 ) = 0
<=> ( a - 1 )2 + ( b + 3 )2 = 0 (*)
\(\hept{\begin{cases}\left(a-1\right)^2\ge0\forall a\\\left(b+3\right)^2\ge0\forall b\end{cases}}\Rightarrow\left(a-1\right)^2+\left(b+3\right)^2\ge0\forall a,b\)
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}a-1=0\\b+3=0\end{cases}}\Rightarrow\hept{\begin{cases}a=1\\b=-3\end{cases}}\)
Vậy a = 1 ; b = -3
a) Rút gọn M = 279. Với m = 2017 giá trị của M = 279.
b) N = 8 a 3 - 27 b 3 = ( 2 a ) 3 - ( 3 b ) 3 = ( 2 a - 3 b ) 3 + 3.2a.3b.(2a - 3b)
Thay a.b = 12;2a - 3b = 5 ta thu được N - 1205.
c) Cách 1: Từ a + b = 1 Þ a = 1 - b thế vào K.
Thực hiện rút gọn K, ta có kết quả K = 1.
Cách 2: Tìm cách đưa biêu thức về dạng a + b.
a 3 + b 3 = ( a + b ) 3 – 3ab(a + b) = 1 - 3ab;
6 a 2 b 2 (a + b) = 6 a 2 b 2 kết hợp với 3ab( a 2 + b 2 ) bằng cách đặt 3ab làm nhân tử chung ta được 3ab( a 2 + 2ab + b 2 ) = 3ab.
Thực hiện rút gọn K = 1.
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
a2 - 2a + 6b + b2 = - 10
=> ( a2 - 2a + 1 ) + ( b2 + 6b + 9 ) = 0
=> ( a - 1 )2 + ( b + 3 )2 = 0
Mà ( a - 1 )2 \(\ge\) 0; ( b + 3 )2 \(\ge\)0
Dấu "=" xảy ra khi :
\(\left\{{}\begin{matrix}a-1=0\\b+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=1\\b=-3\end{matrix}\right.\)