K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2020

a2 - 2a + 6b + b2 = -10

<=> a2 - 2a + 6b + b2 + 10 = 0

<=> ( a2 - 2a + 1 ) + ( b2 + 6b + 9 ) = 0

<=> ( a - 1 )2 + ( b + 3 )2 = 0 (*)

\(\hept{\begin{cases}\left(a-1\right)^2\ge0\forall a\\\left(b+3\right)^2\ge0\forall b\end{cases}}\Rightarrow\left(a-1\right)^2+\left(b+3\right)^2\ge0\forall a,b\)

Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}a-1=0\\b+3=0\end{cases}}\Rightarrow\hept{\begin{cases}a=1\\b=-3\end{cases}}\)

Vậy a = 1 ; b = -3

18 tháng 9 2018

a) Ta có: \(a^2-2a+2\)

\(=\left(a^2-2a+1\right)+1\)

\(=\left(a-1\right)^2+1>0\) với mọi a

\(=>\left(đpcm\right)\)

18 tháng 9 2018

b)Ta có: \(6b-b^2-10\)

\(=-\left(b^2-6b+3^2\right)-1\)

\(=-\left(b-3\right)^2-1< 0\) với mọi b

=>(đpcm).

22 tháng 7 2021

4a2 + 9b2 - 20a + 6b + 26 = 0 <=> ( 2a - 5 )2 + ( 3b + 1 )2 = 0 <=> a = 5/2 ; b = -1/3

5a2 + b2 - 2a + 4ab + 1 = 0 <=> ( 2a + b )2 + ( a - 1 )2 = 0 <=> a = 1 ; b = -2

22 tháng 7 2021

1) Ta có 4a2 + 9b2 - 20a + 6b + 26 = 0

<=> (4a2 - 20a + 25) + (9b2 + 6b + 1) = 0

<=> (2a - 5)2 + (3b + 1)2 = 0

<=> \(\hept{\begin{cases}2a-5=0\\3b+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{5}{2}\\b=-\frac{1}{3}\end{cases}}\)

Vậy a = 5/2 ; b = -1/3

2) Ta có 5a2 + b2 - 2a + 4ab + 1 = 0

<=> (4a2 + 4ab + b2) + (a2 - 2a + 1) = 0

<=> (2a + b)2 + (a - 1)2 = 0

<=> \(\hept{\begin{cases}2a+b=0\\a-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}b=-2\\a=1\end{cases}}\)

Vậy b = -2 ;  a = 1

22 tháng 9 2020

a) a2 - 2a + 2 = ( a2 - 2a + 1 ) + 1 = ( a - 1 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

b) 6b - b2 - 10 = -( b2 - 6b + 9 ) - 1 = -( b - 3 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )

6 tháng 12 2017

Bài 1

\(a^2-2a+6b+b^2=-10\)

<=>\(a^2-2a+1+b^2+6b+9=0\)

<=>\((a-1)^2+(b+3)^2=0\)

Ta lại có: \((a-1)^2\ge0 \)

\((b+3)^2\ge0\)

=> \((a-1)^2+(b+3)^2\ge0\)

\((a-1)^2+(b+3)^2=0\)

=>(a-1)2=0=>a=1

(b+3)2=0=>b=-3

Vậy a=1,b=-3

Bài 2

Ta có: \(A=\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}= \frac{x+y}{z}+1+\frac{x+z}{y}+1+ \frac{y+z}{x}+1 -3 \)

\(=\frac{x+y+z}{z}+\frac{x+y+z}{y}+\frac{x+y+z}{x}-3=(x+y+z)( \frac{1}{z}+\frac{1}{x}+\frac{1}{y})-3=0-3=-3 \)