Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) a2 - 2a + 2 = ( a2 - 2a + 1 ) + 1 = ( a - 1 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
b) 6b - b2 - 10 = -( b2 - 6b + 9 ) - 1 = -( b - 3 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )
a,( x^2-6x+9)+1
=(x-3)^2+1
tự làm tiếp nhé bạn
b, -x^2-4x-4-1
=-(x^2+4x+4)-1
=-(x+2)^2-1
ta thấy -(x+2)^2<0
tự làm tiếp nhé bạn mình chỉ gợi ý thôi
Bài làm:
a) Ta có: \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\left(\forall x\right)\)
=> đpcm
b) \(x^4+3x^2+3=\left(x^4+3x^2+\frac{9}{4}\right)+\frac{3}{4}=\left(x^2+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(\forall x\right)\)
=> đpcm
a) -x2 + 4x - 5 = -x2 + 4x - 4 - 1
= -( x2 - 4x + 4 ) - 1
= -( x - 2 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )
b) x4 + 3x2 + 3 ( * )
Đặt t = x2
(*) <=> t2 + 3t + 3
<=> ( t2 + 3t + 9/4 ) + 3/4
<=> ( t + 3/2 )2 + 3/4
<=> ( x2 + 3/2 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )
a) \(A=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x
b) \(B=x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x
c) \(x^2+xy+y^2+1=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\) với mọi x,y
d) bạn kiểm tra lại đề câu d) nhé:
\(x^2+4y^2+z^2-2x-6y+8z+15\)
\(=\left(x-1\right)^2+\left(2y-\frac{6}{4}\right)^2+\left(z+4\right)^2-\frac{13}{4}\)
a) b2 + 6b + 10
= b2 + 2.( b ).3 + 33 + 1
= ( b + 3 ) 2 + 1
Vì ( b + 3 ) 2 > hoặc = 0
Nên ( b + 3 ) 2 + 1 > 0
b) B= -a2+ 6a - 15
B= - ( a2 + 2.a.3 + 32 + 8 )
B= - [( a + 3 ) 2 + 8 ]
Vì ( a + 3 )2 > hoặc = 0
Nên ( a + 3 ) 2 + 8 > 0
=> - [( a + 3 ) 2 + 8 ] < 0
Vậy B < 0
a) \(b^2+6b+10\)
=\(b^2+2b.3+3^2-3^2+10\)
=\(\left(b+3\right)^2+1\)
Ta có: \(\left(b+3\right)^2\)\(\ge\)0
Nên: \(\left(b+3\right)^2\)> 0 (với mọi b)
b) \(-a^2+6a-15\)
= \(-\left(a^2-6a+15\right)\)
=\(-\left(a^2-2a.3+3^2-3^2+15\right)\)
=\(-\left[\left(a-3\right)^2+6\right]\)
Ta có: \(\left(a-3\right)^2\ge0\)
Nên: \(\left(a-3\right)^2+6>0\)
Do đó: \(-\left[\left(a-3\right)^2+6\right]< 0\)(với mọi a)
c) Ta có VT=\(\left(a-b\right)^2+\left(ab+1\right)^2\)
\(=a^2-2ab+b^2+a^2b^2+2ab+1\)
\(=a^2+b^2+a^2b^2+1\)
Lại có VP= \(\left(a^2+1\right)\left(b^2+1\right)\)
\(=a^2b^2+a^2+b^2+1=a^2+b^2+a^2b^2+1\)(=VT)
Vậy VT=VP
a) x2-6x+10
=(x^2-6x+9)+1
=(x-3)^2+1
vì (x-3)^2>=0 với mọi x nên (x-3)^2+1>0
Hay x^2-6x+10>0
a) Ta có: \(a^2-2a+2\)
\(=\left(a^2-2a+1\right)+1\)
\(=\left(a-1\right)^2+1>0\) với mọi a
\(=>\left(đpcm\right)\)
b)Ta có: \(6b-b^2-10\)
\(=-\left(b^2-6b+3^2\right)-1\)
\(=-\left(b-3\right)^2-1< 0\) với mọi b
=>(đpcm).