K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

a,( x^2-6x+9)+1

=(x-3)^2+1

tự làm tiếp nhé bạn

b, -x^2-4x-4-1

=-(x^2+4x+4)-1

=-(x+2)^2-1

ta thấy -(x+2)^2<0

tự làm tiếp nhé bạn mình chỉ gợi ý thôi

10 tháng 8 2016

a)

=x2-2.3x+9+1

=(x-3)2+1

vì (x-3)2 >= 0 với mọi x nên (x-3)2+1 >0 đpcm

23 tháng 8 2020

1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)

2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)

3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0

4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)

5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)

23 tháng 8 2020

1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)

=> Đpcm

2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)

Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)

=> Đpcm

3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)

\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)

\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)

=> Đpcm

4,5 làm tương tự

28 tháng 6 2019

a) \(x^2-6x+10=x^2-2.3x+3^2+1=\left(x-3\right)^2+1\)

Mà \(\left(x-3\right)^2\ge0\) nên \(\left(x-3\right)^2+1>0\)

hay \(x^2-6x+10>0\left(đpcm\right)\)

b) \(4x-x^2-5=-\left(x^2-4x\right)-5=-\left(x^2-4x+4\right)+4-5\)

\(=-\left(x-2\right)^2-1\)

Vì \(-\left(x-2\right)^2\le0\forall x\)nên \(-\left(x-2\right)^2-1< 0\)

hay \(4x-x^2-5< 0\left(đpcm\right)\)

28 tháng 6 2019

a) Ta có:

\(x^2-6x+10=x^2-6x+9+1\) 1

\(=\left(x-3\right)^2+1\) 

vì \(\left(x-3\right)^2\ge0\forall x\in R\) ;1>0

\(\Rightarrow\left(x-3\right)^2+1\ge1\forall x\in R\) 

=>đpcm

b)

\(4x-x^2-5=-\left(x^2-4x+4\right)-1\) 

\(=-\left(x-2\right)^2-1\) 

vì:\(-\left(x-2\right)^2\le0\forall x\in R\) ;-1<0

=>..........

vậy...

hc tốt

7 tháng 10 2015

a) x2-6x+10

=(x^2-6x+9)+1

=(x-3)^2+1

vì (x-3)^2>=0 với mọi x nên (x-3)^2+1>0

Hay x^2-6x+10>0

19 tháng 7 2017

E=4x​2​+5x+5>0 với mọi x

=(4x​2 +4x+1)+4

=(2x+1)\(^2\)+4

Với mọi x thuộc R thì (2x+1)\(^2\)>=0

Suy ra(2x+1)\(^2\)+4>=4>0

Hay E>0 với mọi x thuộc R(đpcm)

F=5x2​-6x+7>0 với mọi x

=(5x\(^2\)-6x+\(\dfrac{36}{25}\))+\(\dfrac{139}{25}\)

=5\(\left(x-\dfrac{6}{5}\right)^2\)+\(\dfrac{139}{25}\)

Với mọi x thuộc R thì 5\(\left(x-\dfrac{6}{5}\right)^2\)>=0

Suy ra 5\(\left(x-\dfrac{6}{5}\right)^2\)+\(\dfrac{139}{25}\)>0

Hay F >0 với mọi x(đpcm)

G=-x​2​​+5x -6<0 với mọi x​

=-(x​2​​-5x+6,25)+0,25

=-(x-2,5)2 +0,25

Với mọi x thuộc R thì -(x-2,5)2 <=0

Suy ra -(x-2,5)2 +0,25<0

Hay G<0 với mọi x (đpcm)

chúc bạn học tốt ạ

23 tháng 7 2019

a,2x2+8x+20=2(x2+4x)+20

=2(x2+4x+4)+20-4.2

=2(x+2)2+12

Ta có : 2(x+2)2 \(\ge0với\forall x\)

12 > 0

\(\Rightarrow\)2(x+2)2+12>0 với \(\forall x\)

\(\Rightarrow\)2x2+8x+20>0 với \(\forall\)x

b,x4-3x2+5

=(x4-3x2)+5

=(x4-2.\(\frac{3}{2}\)x2+\(\frac{9}{4}\))+5-\(\frac{9}{4}\)

=(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}\)

Có : (x2-3/2)2\(\ge0với\forall x\)

\(\frac{11}{4}\)>0

\(\Rightarrow\)(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}>0với\forall x\)

10 tháng 6 2017

a) \(-2x^2+2x+1>0\)

   \(-\left(2x^2-2x-1\right)>0\)

nhân 2 vế với (-1)=> đổi dấu sao sánh

\(\Leftrightarrow2x^2-2x-1< 0\)

\(\Leftrightarrow x^2-x-\frac{1}{2}< 0\)

\(\Leftrightarrow x^2-2.\frac{1}{2}x+\left(\frac{1}{2}\right)^2-\frac{1}{4}-\frac{1}{2}< 0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\)

ta có \(\left(x-\frac{1}{2}\right)^2\ge0\)với mọi \(x\)

=> \(\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\)(đpcm)

b) \(9x^2-6x+2>0\)

<=> \(\left(3x\right)^2-2.3.x+1-1+2>0\)

<=>\(\left(3x-1\right)^2+1>0\)(1)

vì \(\left(3x-1\right)^2\ge0\)với mọi \(x\)=> (1)  luôn đúng     ( bạn lí giải tương tự như trên nha)

c)\(-4x^2-4x-2< 0\)

\(\Leftrightarrow-\left(4x^2+4x+2\right)< 0\)

nhân 2 vế với (-1)=> đổi dấu so sánh 

\(4x^2+4x+2>0\)

\(\Leftrightarrow\left(2x+1\right)^2+1>0\)

lí giải tương tự như trên

=> đpcm

10 tháng 6 2017

Câu a sai đề rồi cậu ơi

15 tháng 8 2016

a)x2-6x+10

      Ta có:x2-6x+10=x2-2.3x+9+1

                               =(x-3)2+1

            Vì (x-3)2\(\ge\)0

 Suy ra:(x-3)2+1\(\ge\)1(đpcm)

b)4x-x2-5

      Ta có:4x-x2-5=-(x2-4x+5)

                           =-(x2-2.2x+4)-1

                           =-1-(x-2)2

              Vì -(x-2)2\(\le\)0

Suy ra:-1-(x-2)2\(\le\)-1(đpcm)

 

15 tháng 8 2016

a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1>0\) với mọi x

b) \(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\) với mọi x

17 tháng 7 2019

a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1>0\forall x\)

b) \(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)\)

\(=-\left(x+2\right)^2-1\le-1\le0\forall x\)

(đpcm)

17 tháng 7 2019

nhầm câu b tí: \(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)\)

\(=-\left(x-2\right)^2-1\le-1< 0\forall x\)

(đpcm) (sửa dấu + thành - thôi:v)