Cho tam giác ABC vuông tại A có góc B = 60 độ và đường phân giác BE ( E thuộc AC ). vẽ EH vuông góc với BC
a) \(\Delta ABE=\Delta HBE\)
b) BE là đường trung trực của đường thẳng AH
c ) Chứng minh : \(\Delta EBC\) cân
d) BH = HC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔABE=ΔHBE
b: ta có: ΔABE=ΔHBE
nên AE=HE; BA=BH
Suy ra: BE là đường trung trực của AH
a: Xet ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔBAE=ΔBHE
=>BA=BH
b:
Xét ΔBAH có BA=BH
nên ΔBAH cân tại B
BA=BH
EA=EH
=>BE là trung trực của AH
c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBK chung
=>ΔBHK=ΔBAC
=>BK=BC
=>BF là trung trực của CK(1)
Xét ΔEAK vuông tại A và ΔEHC vuông tại H có
EA=EH
góc AEK=góc HEC
=>ΔEAK=ΔEHC
=>EK=EC
=>E nằm trên trung trực của CK(2)
Từ (1), (2) suy ra B,E,F thẳng hàng
a)Xét ΔABE và ΔHBE, ta có
:
( BE là đường phân giác BE).
BE là cạnh chung.
=> ΔABE = ΔHBE
b)
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
c)
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE =ΔCHE
=> EK = EC(hai cạnh tuong ứng)
d)
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
hình bn tự vẽ nha
a)Xét Tam giác ABE và tam giác HBEcó
góc BAE= góc BHE(= 90 độ)
cạnh BE chung
góc ABE=góc HBE(giả thiết)
=> Tam giác ABE = tam giác HBE(c/h-g/n)
b) VÌ Tam giác ABE = tam giác HBE(cmt)
=>BA=BH(2 cạnh tương ứng)
=>B thuộc đường trung trực của AH
=>BE là đường trung trực của đoạn thẳng AH
c) VÌ Tam giác ABE = tam giác HBE(cmt)
=>AE=HE(2 cạnh tương ứng)
Xét tam giác AEK và tam giác HEC có
góc KAE=CHE(= 90 độ)
AE=HE
góc AEK=góc HEC(= 90 độ)
=>tam giác AEK = tam giác HEC(g.c.g)
=>Ek=EC(2 cạnh tương ứng)
1. ΔABE = ΔHBE
Xét ΔABE và ΔHBE, ta có :
(gt)
( BE là đường phân giác của góc HBA).
BE là cạnh chung.
=> ΔABE = ΔHBE
2. BE là đường trung trực của AH :
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
3. EK = EC
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE và ΔCHE
=> EK = EC
4. EC > AC
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔABE=ΔHBE
b: ΔBAE=ΔBHE
=>BA=BH và EA=EH
=>BE là trung trực của AH
c: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có
EA=EH
góc AEK=góc HEC
=>ΔEAK=ΔEHC
=>EK=EC
=>ΔEKC cân tại E
a)Vì BE là tpg của \(\widehat{ABC}\)(gt)
=>\(\widehat{ABE}\)=\(\widehat{EBH}\)(=\(\widehat{EBC}\))
Xét tam giác ABE vuông ở A và tam giác HBE vuông ở H có:
BE:cạnh chung
\(\widehat{ABE}\)=\(\widehat{EBH}\)(cmt)
=>tam giác ABE=tam giác HBE(ch-gn)
b)Vì tam giác ABE=tam giác HBE(cmt)
=>AB=HB(cặp cạnh t.ư)
Xét tam giác ABH có:AB=HB(cmt)
=>tam giác ABH cân ở B(DHNB0
Xét tam giác ABH cân ở B có:AE là tpg của \(\widehat{ABH}\)(vì AE là tpg của \(\widehat{ABC}\))
=>BE là đg trung trực của AH (t/c tam giác cân)
C) VÌ BE LÀ TIA PHÂN GIÁC CỦA ^B
=>^ABE=^EBH=60/2=30
XÉT TAM GIÁC ABC
TA CÓ ^A+^B+^C=180(Đ/L)
THAY 90+60+^C=180
^C=180-(90+60)=30
XÉT TAM GIÁC EBC
CÓ \(\widehat{C}=\widehat{B}=30\left(cmt\right)\)
=>tam EBC CÂN TẠI E (ĐPCM)
^ là góc :))
a,Xét \(\Delta\)vuông ABE và \(\Delta\)vuông HBE :
ABE^=HBE^ (gt)
BE cạnh chung
=> Tam giác ABE=tam giác HBE(ch-gn)
b,Gọi K là giao điểm của BE và AH
Xét tam giác AEK và tam giác HEK có :
EK cạnh chung
AEK^=HEK^ (cm câu a)
AE=HE (cm câu a)
=>tam giác AEK=tam giác HEK (c-g-c)
=>AKE^=EKH^=180*/2=90* ; AK=HK (1)
=>AKB^=HKB^=90* (đối đỉnh) (2)
từ 1 và 2 => BE là đg trung trực của AH
c,Ta có BAC^+ABC^+ACB^=180*
=> 90* + 60* +ACB^ = 180*
=>ACB^=30* (3)
do EBH^=30* (4)
Từ 3 và 4
=>Tam giác BEC cân tại E ( vì ACB^ = EBH^ )
D, xét tam giác vuông EHB và Tam giác vuông EHC :
EBH^=ECH^ (cm câu c)
EH cạnh chung
=>tam giác EHB = tam giác EHC (cgv-gn)
=>BH=HC
P/S : viết mỏi tay >: