Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔBAE=ΔBHE
=>BA=BH
b:
Xét ΔBAH có BA=BH
nên ΔBAH cân tại B
BA=BH
EA=EH
=>BE là trung trực của AH
c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBK chung
=>ΔBHK=ΔBAC
=>BK=BC
=>BF là trung trực của CK(1)
Xét ΔEAK vuông tại A và ΔEHC vuông tại H có
EA=EH
góc AEK=góc HEC
=>ΔEAK=ΔEHC
=>EK=EC
=>E nằm trên trung trực của CK(2)
Từ (1), (2) suy ra B,E,F thẳng hàng
a)Xét ΔABE và ΔHBE, ta có
:
( BE là đường phân giác BE).
BE là cạnh chung.
=> ΔABE = ΔHBE
b)
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
c)
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE =ΔCHE
=> EK = EC(hai cạnh tuong ứng)
d)
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔABE=ΔHBE
b: ta có: ΔABE=ΔHBE
nên AE=HE; BA=BH
Suy ra: BE là đường trung trực của AH
a) Xét \(\Delta ABE\) và \(\Delta HBE\):
BE chung
\(\widehat{ABE}=\widehat{EBH}\)
\(\widehat{EAB}=\widehat{EHB}=90^o\)
\(\Rightarrow\Delta ABE=\Delta HBE\left(ch-gn\right)\)
b) \(\widehat{EBH}=\dfrac{1}{2}\widehat{B}=30^o\)
\(\widehat{ACB}=90^o-\widehat{B}=30^o\)
\(\Rightarrow\Delta EBC\) cân tại E
Mà EH vuông góc BC
\(\Rightarrow HB=HC\)
c) \(\widehat{HEB}=90^o-\widehat{EBH}=60^o\)
\(KH//BE\Rightarrow\widehat{KHE}=\widehat{HEB}=60^o\)
\(\widehat{HEB}+\widehat{AEB}=60^o+60^o=120^o\)
\(\Rightarrow\widehat{KEH}=180^o-120^o=60^o\)
\(\Rightarrow\Delta EHK\) đều
d) Theo phần a. \(\Delta ABE=\Delta HBE\Rightarrow AE=EH\)
\(\Delta IAE\) vuông ở A \(\Rightarrow IE>AE\)
\(\Rightarrow IE>EH\)
a) Xét ΔABEΔABE và ΔHBEΔHBE:
BE chung
ˆABE=ˆEBHABE^=EBH^
ˆEAB=ˆEHB=90oEAB^=EHB^=90o
⇒ΔABE=ΔHBE(ch−gn)⇒ΔABE=ΔHBE(ch−gn)
b) ˆEBH=12ˆB=30oEBH^=12B^=30o
ˆACB=90o−ˆB=30oACB^=90o−B^=30o
⇒ΔEBC⇒ΔEBC cân tại E
Mà EH vuông góc BC
⇒HB=HC⇒HB=HC
c) ˆHEB=90o−ˆEBH=60oHEB^=90o−EBH^=60o
KH//BE⇒ˆKHE=ˆHEB=60oKH//BE⇒KHE^=HEB^=60o
ˆHEB+ˆAEB=60o+60o=120oHEB^+AEB^=60o+60o=120o
⇒ˆKEH=180o−120o=60o⇒KEH^=180o−120o=60o
⇒ΔEHK⇒ΔEHK đều
d) Theo phần a. ΔABE=ΔHBE⇒AE=EHΔABE=ΔHBE⇒AE=EH
ΔIAEΔIAE vuông ở A ⇒IE>AE
Trả lời................
Tớ không biết đúng hay sai đâu nha Ý Phạm
a,Xét tam giác ABE (BAE^ vuông) và tam giác HBE (BHE^ vuông) có:
BE=BE (cạnh chung)
ABE^=HBE^
⟹ ABE^=HBE^(ch+gn)
b,Ta có:
BA=BH (tam giác ABE = tam giác HBE)
EA=EH (________________________)
⟹ BE là đường trung trực của AH
c,Xét tam giác EKA và tam giác ECH có
AE=EH (gt)
EAK^=EHK^(=90o)
AEK^=HEC^(đối đỉnh)
⟹Tam giác EKA=tam giacsEHK (g-c-g)
⟹EK=EH ( cạnh tương ứng)
d,Từ điểm E đến đường thẳng HC có:
EH là đường vuông góc
EC là đường xiên
⟹EH<EC( quan hệ đường vuông góc)
Mà EH=AE(tam giác ABE = tam giác HBE)
⟹AE<AC
hình bn tự vẽ nha
a)Xét Tam giác ABE và tam giác HBEcó
góc BAE= góc BHE(= 90 độ)
cạnh BE chung
góc ABE=góc HBE(giả thiết)
=> Tam giác ABE = tam giác HBE(c/h-g/n)
b) VÌ Tam giác ABE = tam giác HBE(cmt)
=>BA=BH(2 cạnh tương ứng)
=>B thuộc đường trung trực của AH
=>BE là đường trung trực của đoạn thẳng AH
c) VÌ Tam giác ABE = tam giác HBE(cmt)
=>AE=HE(2 cạnh tương ứng)
Xét tam giác AEK và tam giác HEC có
góc KAE=CHE(= 90 độ)
AE=HE
góc AEK=góc HEC(= 90 độ)
=>tam giác AEK = tam giác HEC(g.c.g)
=>Ek=EC(2 cạnh tương ứng)
a)Vì BE là tpg của \(\widehat{ABC}\)(gt)
=>\(\widehat{ABE}\)=\(\widehat{EBH}\)(=\(\widehat{EBC}\))
Xét tam giác ABE vuông ở A và tam giác HBE vuông ở H có:
BE:cạnh chung
\(\widehat{ABE}\)=\(\widehat{EBH}\)(cmt)
=>tam giác ABE=tam giác HBE(ch-gn)
b)Vì tam giác ABE=tam giác HBE(cmt)
=>AB=HB(cặp cạnh t.ư)
Xét tam giác ABH có:AB=HB(cmt)
=>tam giác ABH cân ở B(DHNB0
Xét tam giác ABH cân ở B có:AE là tpg của \(\widehat{ABH}\)(vì AE là tpg của \(\widehat{ABC}\))
=>BE là đg trung trực của AH (t/c tam giác cân)
C) VÌ BE LÀ TIA PHÂN GIÁC CỦA ^B
=>^ABE=^EBH=60/2=30
XÉT TAM GIÁC ABC
TA CÓ ^A+^B+^C=180(Đ/L)
THAY 90+60+^C=180
^C=180-(90+60)=30
XÉT TAM GIÁC EBC
CÓ \(\widehat{C}=\widehat{B}=30\left(cmt\right)\)
=>tam EBC CÂN TẠI E (ĐPCM)
^ là góc :))
a,Xét \(\Delta\)vuông ABE và \(\Delta\)vuông HBE :
ABE^=HBE^ (gt)
BE cạnh chung
=> Tam giác ABE=tam giác HBE(ch-gn)
b,Gọi K là giao điểm của BE và AH
Xét tam giác AEK và tam giác HEK có :
EK cạnh chung
AEK^=HEK^ (cm câu a)
AE=HE (cm câu a)
=>tam giác AEK=tam giác HEK (c-g-c)
=>AKE^=EKH^=180*/2=90* ; AK=HK (1)
=>AKB^=HKB^=90* (đối đỉnh) (2)
từ 1 và 2 => BE là đg trung trực của AH
c,Ta có BAC^+ABC^+ACB^=180*
=> 90* + 60* +ACB^ = 180*
=>ACB^=30* (3)
do EBH^=30* (4)
Từ 3 và 4
=>Tam giác BEC cân tại E ( vì ACB^ = EBH^ )
D, xét tam giác vuông EHB và Tam giác vuông EHC :
EBH^=ECH^ (cm câu c)
EH cạnh chung
=>tam giác EHB = tam giác EHC (cgv-gn)
=>BH=HC
P/S : viết mỏi tay >: