K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2020

a)Vì BE là tpg của \(\widehat{ABC}\)(gt)

=>\(\widehat{ABE}\)=\(\widehat{EBH}\)(=\(\widehat{EBC}\))

Xét tam giác ABE vuông ở A và tam giác HBE vuông ở H có:

BE:cạnh chung

\(\widehat{ABE}\)=\(\widehat{EBH}\)(cmt)

=>tam giác ABE=tam giác HBE(ch-gn)

b)Vì tam giác ABE=tam giác HBE(cmt)

=>AB=HB(cặp cạnh t.ư)

Xét tam giác ABH có:AB=HB(cmt)

=>tam giác ABH cân ở B(DHNB0

Xét tam giác ABH cân ở B có:AE là tpg của \(\widehat{ABH}\)(vì AE là tpg của \(\widehat{ABC}\))

=>BE là đg trung trực của AH (t/c tam giác cân)

C) VÌ BE LÀ TIA PHÂN GIÁC CỦA ^B

=>^ABE=^EBH=60/2=30

XÉT TAM GIÁC ABC

TA CÓ ^A+^B+^C=180(Đ/L)

   THAY 90+60+^C=180

^C=180-(90+60)=30

XÉT TAM GIÁC EBC

CÓ \(\widehat{C}=\widehat{B}=30\left(cmt\right)\)

=>tam EBC CÂN TẠI E (ĐPCM)

15 tháng 2 2020

^ là góc :))

a,Xét \(\Delta\)vuông ABE và \(\Delta\)vuông HBE :

ABE^=HBE^ (gt)

BE cạnh chung 

=> Tam giác ABE=tam giác HBE(ch-gn)

b,Gọi K là giao điểm của BE và AH

Xét tam giác AEK và tam giác HEK có :

EK cạnh chung 

AEK^=HEK^ (cm câu a)

AE=HE (cm câu a)

=>tam giác AEK=tam giác HEK (c-g-c)

=>AKE^=EKH^=180*/2=90* ; AK=HK (1)

=>AKB^=HKB^=90* (đối đỉnh) (2)

từ 1 và 2 => BE là đg trung trực của AH

c,Ta có BAC^+ABC^+ACB^=180*

=> 90* + 60* +ACB^ = 180*

=>ACB^=30* (3)

do EBH^=30* (4)

Từ 3 và 4 

=>Tam giác BEC cân tại E ( vì ACB^ = EBH^ )

D, xét tam giác vuông EHB và Tam giác vuông EHC :

EBH^=ECH^ (cm câu c)

EH cạnh chung 

=>tam giác EHB = tam giác EHC (cgv-gn)

=>BH=HC

P/S : viết mỏi tay >:

2 tháng 5 2020

a)Xét ΔABE và ΔHBE, ta có

:\widehat{BAE} =\widehat{BHE} =90^0

\widehat{B_1} =\widehat{B_2}( BE là đường phân giác BE).

BE là cạnh chung.

=> ΔABE = ΔHBE

b)

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

c)

Xét ΔKAE và ΔCHE, ta có :

\widehat{KAE} =\widehat{CHE} =90^0 (gt)

EA = EH (cmt)

\widehat{E_1} =\widehat{E_2}( đối đỉnh).

=> ΔKAE =ΔCHE

=> EK = EC(hai cạnh tuong ứng)

d)

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

2 tháng 5 2020

AE<Ec

10 tháng 5 2019

Trả lời................

Tớ không biết đúng hay sai đâu nha Ý Phạm

a,Xét tam giác ABE (BAE^ vuông) và tam giác HBE (BHE^ vuông) có:

BE=BE (cạnh chung)

ABE^=HBE^

 ⟹ ABE^=HBE^(ch+gn)

b,Ta có:

BA=BH (tam giác ABE = tam giác HBE)

EA=EH (________________________)

 ⟹ BE là đường trung trực của AH

c,Xét tam giác EKA và tam giác ECH có

AE=EH (gt)

EAK^=EHK^(=90o)

AEK^=HEC^(đối đỉnh)

 ⟹Tam giác EKA=tam giacsEHK (g-c-g)

 ⟹EK=EH ( cạnh tương ứng)

d,Từ điểm E đến đường thẳng HC có:
EH là đường vuông góc

EC là đường xiên

 ⟹EH<EC( quan hệ đường vuông góc)

Mà EH=AE(tam giác ABE = tam giác HBE)

 ⟹AE<AC

10 tháng 5 2019

Xin lỗi mình nhầm ở ròng cuối nha là

EC>AE

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

18 tháng 4 2016

ko bít

đề ngay chỗ K là giao điểm của AB và HE là sao mk vẽ ko được???

8789

12 tháng 1 2020

a) Do tam giác ABC vuông tại A 

=> Theo định lý py-ta-go ta có

BC^2=AB^2+AC^2

=>BC=\(\sqrt{AB^2+AC^2}\)\(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15

Vậy cạnh BC dài 15 cm

b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có

BE là cạnh chung

AB=BD(Giả thiết)

=>Tam giác ABE=Tam giác DBE(CGV-CH)

12 tháng 1 2020

B A C H D E K M

 GT 

 △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm

 D \in BC : BD = BA.

 DK ⊥ BC (K \in AB , DK ∩ AC = { E }

 AH ⊥ BC , AH ∩ BE = { M }

 KL

 a, BC = ?

 b, △ABE = △DBE ; BE là phân giác ABC

 c, △AME cân

Bài giải:

a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)

b, Xét △ABE vuông tại A và △DBE vuông tại D

Có: AB = BD (gt)

    BE là cạnh chung

=> △ABE = △DBE (ch-cgv)

=> ABE = DBE (2 góc tương ứng)

Mà BE nằm giữa BA, BD

=> BE là phân giác ABD

Hay BE là phân giác ABC

c, Vì △ABE = △DBE (cmt)

=> AEB = DEB (2 góc tương ứng)

Vì DK ⊥ BC (gt)

    AH ⊥ BC (gt)

=> DK // AH (từ vuông góc đến song song)

=> AME = MED (2 góc so le trong)

Mà MED = MEA (cmt)

=> AME = MEA 

=> △AME cân

4 tháng 6 2020

a ) Ta có : 

+) \(AB< AC\) ( gt )  

 \(\Rightarrow ACB< ABC\) ( quan hệ gữa góc và cạnh đối diện )

+ ) \(ABH+BAH+AHB=180\)( tổng ba góc trong một tam giác )

\(\Rightarrow ABH+60+90=180\)

\(\Rightarrow ABH=30\)

b ) Ta có :\(AD\)là phân giác góc \(A\) ( gt ) 

\(\Rightarrow BAD=CAD=\frac{BAC}{2}=\frac{60}{2}=30\)

Mà \(ABH=30\) ( cmt ) 

\(\Rightarrow ABH=BAD\)

\(\Rightarrow ABH=BAI\)

Xét tam giác \(AIB\) và tam giác \(BHA\) có : 

\(AB\) chung 

\(AIB=BHA=90\)

\(BAI=ABH\)

\(\Rightarrow\) tam giác \(AIB\) \(=\) tam giác \(BHA\) ( g - c - g ) 

c ) Xét tam giác \(ABI\) có : 

\(ABI+BAI+AIB=180\)( tổng ba góc trong một tam giác )

\(\Rightarrow ABI+30+90=180\)

\(\Rightarrow ABI=60\)

\(\Rightarrow ABE=60\)                                 ( 1 ) 

 Xét tam giác \(ABE\) có : 

\(ABE+BAE+AEB=180\)  ( tổng ba góc trong một tam giác )

\(\Rightarrow60+60+AEB=180\)

\(\Rightarrow AEB=60\)                                  ( 2 ) 

Mà \(BAE=60\) ( gt )                         ( 3 )  

Từ ( 1 ) ; ( 2 ) ; ( 3 ) 

\(\Rightarrow\) tam giác \(ABE\) đều 

 
 
 
9 tháng 6 2020

Chứng minh câu d: 

A B C D H E I 1

Ta có: AE = AB < AC 

=> E thuộc canh AC 

\(\Delta\)ABE đều mà AD vuông BE tại I => AD là đường trung trực của DE => DB = DE  (1)

Dễ chứng minh \(\Delta\)ABD = \(\Delta\)AED 

=> ^ABD = ^AED => ^B1 = ^DEC  ( góc ngoài ) 

mà ^B1 là góc ngoài của \(\Delta\)ABC tại B => ^B> ^C 

=> ^DEC > ^C = ^ECD 

Xét trong \(\Delta\)DEC có: ^DEC > ^ECD => DC > DE (2) 

Từ (1); (2) => DC > DB 

18 tháng 4 2019

a.Xét △ABE vuông tại A và △HBE vuông tại H có :

BE chung

góc ABE = góc HBE (vì BE là tia phân giác)

=>△ABE = △HBE (cạnh huyền - góc nhọn)

b. Vì △ABE = △HBE (chứng minh trên)

=>AB = HB (2 cạnh tương ứng)

=> △AHB cân tại B

mà BE là tia phân giác của góc ABC (giả thuyết)

nên BE đồng thời là đường trung trực của đoạn thẳng AH.