K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

a ) Để ý thấy \(16\sqrt{3}=2.2\sqrt{3}.4=2.\sqrt{12}.4\) , như vậy , ta sẽ tách :

\(28=12+16\) \(\Rightarrow\sqrt{\sqrt{28+16\sqrt{3}}=\sqrt{\sqrt{12+16+16\sqrt{3}}}}=\sqrt{\sqrt{\left(\sqrt{12}+4\right)^2}}=\sqrt{\sqrt{12}+4}\)

\(=\sqrt{3+2.\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

b ) \(4\sqrt{3}=2.2\sqrt{3}\), tách \(7=4+3\)

c ) \(24\sqrt{5}=2.\sqrt{5}.12=2.\sqrt{5}.2.6=2.\sqrt{20}.6\) , tách : \(56=20+36\)

d ) \(2\sqrt{11}=2.11.1\) , tách : \(12=11+1\)

e ) \(4\sqrt{2}=2.\sqrt{2}.2.1=2.\sqrt{8}.1\) , tách : \(9=8+1\)

Y
1 tháng 5 2019

a) \(\sqrt{\sqrt{28+16\sqrt{3}}}\)

\(=\sqrt{\sqrt{\left(2\sqrt{3}\right)^2+2\cdot2\sqrt{3}\cdot4+16}}\)

\(=\sqrt{\sqrt{\left(2\sqrt{3}+4\right)^2}}\) \(=\sqrt{2\sqrt{3}+4}\)

\(=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

b)\(\sqrt{7+4\sqrt{3}}=\sqrt{4+4\sqrt{3}+3}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)

c) \(\sqrt{\sqrt{56-24\sqrt{5}}}=\sqrt{\sqrt{\left(2\sqrt{5}\right)^2-2\cdot2\sqrt{5}\cdot6}+36}\)

\(=\sqrt{\sqrt{\left(2\sqrt{5}-6\right)^2}}=\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{5-2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-1\)

d) \(\sqrt{12-2\sqrt{11}}=\sqrt{11-2\sqrt{11}+1}\)

\(=\sqrt{\left(\sqrt{11}-1\right)^2}=\sqrt{11}-1\)

e) \(\sqrt{9+4\sqrt{2}}=\sqrt{\left(2\sqrt{2}\right)^2+2\cdot2\sqrt{2}+1}\)

\(=\sqrt{\left(2\sqrt{2}+1\right)^2}=2\sqrt{2}+1\)

19 tháng 9 2021

a) \(1=\sqrt{1}< \sqrt{2}\)

b) \(2=\sqrt{4}>\sqrt{3}\)

c) \(6=\sqrt{36}< \sqrt{41}\)

d) \(7=\sqrt{49}>\sqrt{47}\)

e) \(2=1+1=\sqrt{1}+1< \sqrt{2}+1\)

f) \(1=2-1=\sqrt{4}-1>\sqrt{3}-1\)

g) \(2\sqrt{31}=\sqrt{4.31}=\sqrt{124}>\sqrt{100}=10\)

h) \(\sqrt{3}>0>-\sqrt{12}\)

i) \(5=\sqrt{25}< \sqrt{29}\)

\(\Rightarrow-5>-\sqrt{29}\)

19 tháng 9 2021

Giỏi quá

30 tháng 4 2019

\(\sqrt{\sqrt{\left(3\right)^8}}\)=\(\sqrt{\sqrt{6561}}=\sqrt{81}=9\)

\(\sqrt[2]{\left(-5^4\right)}=\sqrt[2]{625}=25\)

19 tháng 6 2019

1.

\(\sqrt{\frac{2+\sqrt{3}}{2}}\\ =\frac{\sqrt{2+\sqrt{3}}}{\sqrt{2}}\\ =\frac{\sqrt{4+2\sqrt{3}}}{2}\\ =\frac{\sqrt{\left(1+\sqrt{3}\right)^2}}{2}\\ =\frac{1+\sqrt{3}}{2}\)

2.

\(\sqrt{\frac{14+5\sqrt{3}}{2}}\\ =\frac{\sqrt{14+5\sqrt{3}}}{\sqrt{2}}\\ =\frac{\sqrt{28+10\sqrt{3}}}{2}\\ =\frac{\sqrt{\left(5+\sqrt{3}\right)^2}}{2}\\ =\frac{5+\sqrt{3}}{2}\)

19 tháng 6 2019

Hỏi đáp Toán

a: \(4\sqrt{7}=\sqrt{4^2\cdot7}=\sqrt{112}\)

\(3\sqrt{13}=\sqrt{3^2\cdot13}=\sqrt{117}\)

mà 112<117

nên \(4\sqrt{7}< 3\sqrt{13}\)

b: \(3\sqrt{12}=\sqrt{3^2\cdot12}=\sqrt{108}\)

\(2\sqrt{16}=\sqrt{16\cdot2^2}=\sqrt{64}\)

mà 108>64

nên \(3\sqrt{12}>2\sqrt{16}\)

c: \(\dfrac{1}{4}\sqrt{84}=\sqrt{\dfrac{1}{16}\cdot84}=\sqrt{\dfrac{21}{4}}\)

\(6\sqrt{\dfrac{1}{7}}=\sqrt{36\cdot\dfrac{1}{7}}=\sqrt{\dfrac{36}{7}}\)

mà \(\dfrac{21}{4}>\dfrac{36}{7}\)

nên \(\dfrac{1}{4}\sqrt{84}>6\sqrt{\dfrac{1}{7}}\)

d: \(3\sqrt{12}=\sqrt{3^2\cdot12}=\sqrt{108}\)

\(2\sqrt{16}=\sqrt{16\cdot2^2}=\sqrt{64}\)

mà 108>64

nên \(3\sqrt{12}>2\sqrt{16}\)

25 tháng 8 2021

\(\left|\vec{AD}+\vec{AB}\right|=\left|\vec{AC}\right|=AC=a\sqrt{2}\)

25 tháng 8 2021

Han Nguyen

Quy tắc hình bình hành mà em, sau đó dùng Pitago nữa là ra đường chéo.

Hoặc như này dễ hiểu hơn:

\(\left|\vec{AD}+\vec{AB}\right|=\left|\vec{AD}+\vec{DC}\right|=\left|\vec{AC}\right|=AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)

19 tháng 6 2019

1/\(\sqrt{\frac{4}{5}}\)+\(\sqrt{\frac{1}{2}}\)

=\(\sqrt{\frac{4.5}{5.5}}\)+\(\sqrt{\frac{1.2}{2.2}}\)

= \(5.2.\sqrt{5}\)+\(2\sqrt{2}\)

=\(10\sqrt{5}+2\sqrt{2}\)

19 tháng 6 2019

2.

\(\sqrt{\frac{1}{12}}\)+\(\sqrt{\frac{1}{3}}\)

=\(\sqrt{\frac{1.12}{12.12}}\)+\(\sqrt{\frac{1.3}{3.3}}\)

=\(12.2\sqrt{3}\)+\(3\sqrt{3}\)

=\(\sqrt{3}\left(24+3\right)\)

=\(27\sqrt{3}\)

6 tháng 7 2018

\(Q=\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\left(ĐK:x\ge0;x\ne16\right)\\ =\dfrac{x-4\sqrt{x}+\sqrt{x}-4}{x-4\sqrt{x}+3\sqrt{x}-12}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-4\right)+\left(\sqrt{x}-4\right)}{\sqrt{x}\left(\sqrt{x}-4\right)+3\left(\sqrt{x}-4\right)}\\ =\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-4\right)}\\ =\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)

\(P=\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{xy}\)