Bài 2: Cho tam giác ABC có ba góc nhọn, AB < AC, đường cao AH. Gọi M là trung điểm của AC, N là điểm đối xứng với H qua M. Chứng minh:Tứ giác AHCN là hình chữ nhật.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: \(MN=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
a: Xét ΔABC có AI/AB=AK/AC
nên IK//BC
=>BIKC là hình thang
b: Xét tứ giác AHBM có
I là trung điểm chung của AB và HM
nên AHBM là hình bình hành
mà góc AHB=90 độ
nên AHBM là hình chữ nhật
c: Xét tứ giác ANHI có
O là trung điểm chung của AH và NI
AH vuông góc với NI
Do đó: ANHI là hình thoi
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó:MN là đường trung bình của ΔBAC
Suy ra: MN//BC
Xét ΔABH có
M là trung điểm của AB
MI//BH
Do đó:I là trung điểm của AH
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=BC/2
hay MN//BP và MN=BP
=>BMNP là hình bình hành
b: Xét tứ giác AKBH có
M là trung điểm của HK
M là trung điểm của AB
Do đó: AKBH là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AKBH là hình chữ nhật
c: Xét ΔABC có
M là trung điểm của AB
P là trung điểm của BC
Do đó: MP là đường trung bình
=>MP=AC/2(1)
Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến
nên HN=AC/2(2)
Từ (1) và (2) suy ra MP=HN
Xét tứ giác MNPH có MN//PH
nên MNPH là hình thang
mà MP=NH
nên MNPH là hình thang cân
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC
Xét ΔABH có
M là trung điểm của AB
MI//BH
Do đó: I là trung điểm của AH
Bạn tự vẽ hình giúp mình nhé!
Xét tam giác AHC vuông tại H có:
HM là đường trung tuyến ứng với cạnh huyền AC
\(\Rightarrow HM=AM=MC=MN\)
\(\Rightarrow HN=AC\) (1)
Xét tam giác HMC và tam giác NMA có:
\(\left\{{}\begin{matrix}AM=MC\\\widehat{AMN}=\widehat{CMH}\left(đđ\right)\\HM=MN\end{matrix}\right.\)
\(\Rightarrow\Delta HMC=\Delta NMA\)
\(\Rightarrow\widehat{MHC}=\widehat{MNA}\)
Mà hai góc trên nằm ở vị trí so le
\(\Rightarrow\)AN//HC(2)
Chứng minh tương tự ta được AH//NC(3)
Từ (1),(2),(3) suy ra, tứ giác AHCN là hình chữ nhật