Cho 2 số dương a, b thỏa \(a^{10}+b^{10}=a^{11}+b^{11}=a^{12}+b^{12}\) Tính P = 2011a - 2012b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Quy đồng bỏ mẫu rồi giai pt ta đc : \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
b)\(x=1\)
Có \(a^{12}+b^{12}=a^{12}+a^{11}b-a^{11}b+ab^{11}-ab^{11}+b^{12}\)
\(=a^{11}\left(a+b\right)+b^{11}\left(a+b\right)-a^{11}b-ab^{11}\)
\(=\left(a^{11}+b^{11}\right)\left(a+b\right)-ab\left(a^{10}+b^{10}\right)\)
\(=\left(a^{12}+b^{12}\right)\left(a+b\right)-ab\left(a^{12}+b^{12}\right)\)(vì giả thiết cho \(a^{10}+b^{10}=a^{11}+b^{11}=a^{12}+b^{12}\))
\(=\left(a^{12}+b^{12}\right)\left(a+b-ab\right)\)
Đã chứng minh \(a^{12}+b^{12}=\left(a^{12}+b^{12}\right)\left(a+b-ab\right)\)suy ra:
\(a+b-ab=1\)
=> \(a+b-ab-1=0\)
=> \(a-1-b\left(a-1\right)=0\)
=> \(\left(a-1\right)\left(1-b\right)=0\)
=> \(a=1\)hoặc \(b=1\)
Nếu \(a=1\)thì từ giả thiết suy ra
\(b^{10}+1=b^{11}+1\)
=> \(b^{10}=b^{11}\)suy ra \(b^{10}\left(b-1\right)=b^{11}-b^{10}=0\)
Mà đề cho b dương =>\(b=1\)=>\(P=a^{20}+b^{20}=2\)
Nếu \(b=1\)thì từ giả thiết suy ra
\(a^{10}+1=a^{11}+1\)
=> \(a^{10}=a^{11}\)suy ra \(a^{10}\left(a-1\right)=a^{11}-a^{10}=0\)
Mà đề cho a dương =>\(a=1\)=>\(P=a^{20}+b^{20}=2\)
Ta có:
\(^{a^{12}+b^{12}=a.\left(a^{11}+b^{11}\right)-ab^{11}+b.\left(a^{11}+b^{11}\right)-ba^{11}}\)
\(\Rightarrow a^{12}+b^{12}=a.\left(a^{11}+b^{11}\right)+b.\left(a^{11}+b^{11}\right)-ab.\left(a^{10}+b^{10}\right)\)
Do \(a^{12}+b^{12}=a^{11}+b^{11}=a^{10}+b^{10}\)và các tổng này khác 0 ( do a,b khác 0)
\(\Rightarrow1=a+b-ab\)
=> 1= a+b.(1-a)
=> 1-a= b.(1-a)
=> (1-a) - b.(1-a)=0
=> (1-a).(1-b)=0
=> 1-a=0 hoặc 1-b=0 => a=1 hoặc b=1
Với a=1 thì 1^10+b^10=1^11+b^11=>b^10=b^11. Do b khác 0=> b=1
Với b=1 thì a^10+1^10=a^11+1^11=>a^10=a^11. Do a khác 0=> a=1
=> a=1 và b=1
=> M= a^2012+b^2012= 1^2012+1^2012=1+1=2
với a, b >0
\(a^9+b^9=a^{10}+b^{10}< =>a^9\left(a-1\right)+b^9\left(b-1\right)=0\)
\(a^{10}+b^{10}=a^{11}+b^{11}< =>a^{10}\left(a-1\right)+b^{10}\left(b-1\right)=0\)
trừ vế theo vế ta được (a-1)(a10-a9) + (b-1)(b10-b9) = 0 <=> [b3(b-1)]2 + [b3(b-1)]2 =0
<=> \(\hept{\begin{cases}a^3\left(a-1\right)=0\\b^3\left(b-1\right)=0\end{cases}< =>\hept{\begin{cases}a-1=0\\b-1=0\end{cases}< =>}}\)a = b =1
vậy P= 2020
Ta có 12 ≥ ( a + b ) 3 + 4 a b ≥ 2 a b 3 + 4 a b . Đặt t = a b , t > 0 thì
12 ≥ 8 t 3 + 4 t 2 ⇔ 2 t 3 + t 2 − 3 ≤ 0 ⇔ ( t − 1 ) ( 2 t 2 + 3 t + 3 ) ≤ 0
Do 2 t 2 + 3 t + 3 > 0 , ∀ t nên t − 1 ≤ 0 ⇔ t ≤ 1 . Vậy 0 < a b ≤ 1
Chứng minh được 1 1 + a + 1 1 + b ≤ 2 1 + a b , ∀ a , b > 0 thỏa mãn a b ≤ 1
Thật vậy, BĐT 1 1 + a − 1 1 + a b + 1 1 + b − 1 1 + a b ≤ 0
a b − a ( 1 + a ) ( 1 + a b ) + a b − b ( 1 + b ) ( 1 + a b ) ≤ 0 ⇔ b − a 1 + a b a 1 + a − b 1 + b ⇔ ( b − a ) 2 ( a b − 1 ) ( 1 + a b ) ( 1 + a ) ( 1 + b ) ≤ 0
Do 0 < a b ≤ 1 nên BĐT này đúng
Tiếp theo ta sẽ CM 2 1 + a b + 2015 a b ≤ 2016 , ∀ a , b > 0 thỏa mãn a b ≤ 1
Đặt t = a b , 0 < t ≤ t ta được 2 1 + t + 2015 t 2 ≤ 2016
2015 t 3 + 2015 t 2 − 2016 t − 2014 ≤ 0 ⇔ ( t − 1 ) ( 2015 t 2 + 4030 t + 2014 ) ≤ 0
BĐT này đúng ∀ t : 0 < t ≤ 1
Vậy 1 1 + a + 1 1 + b + 2015 a b ≤ 2016. Đẳng thức xảy ra a = b = 1
\(P=\frac{5a+5b+2c}{\sqrt{12\left(a^2+ab+bc+ca\right)}+\sqrt{12\left(b^2+ab+bc+ca\right)}+\sqrt{c^2+ab+bc+ca}}\)
\(=\frac{5a+5b+2c}{\sqrt{12\left(a+b\right)\left(a+c\right)}+\sqrt{12\left(a+b\right)\left(b+c\right)}+\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(=\frac{5a+5b+2c}{\sqrt{\left(6a+6b\right)\left(2a+2c\right)}+\sqrt{\left(6a+6b\right)\left(2b+2c\right)}+\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(\Rightarrow P\ge\frac{2\left(5a+5b+2c\right)}{6a+6b+2a+2c+6a+6b+2b+2c+a+c+b+c}\)
\(\Rightarrow P\ge\frac{2\left(5a+5b+2c\right)}{3\left(5a+5b+2c\right)}=\frac{2}{3}\)
\(P_{min}=\frac{2}{3}\) khi \(\left\{{}\begin{matrix}a=b=1\\c=5\end{matrix}\right.\)
\(\text{Ta có:}\)
\(a^{12}+b^{12}-\left(a^{11}+b^{11}\right)\left(a+b\right)+\left(a^{10}+b^{10}\right)ab=0\)
\(\Rightarrow\left(a^{12}+b^{12}\right)\left(ab-a-b+1\right)=0\Leftrightarrow\orbr{\begin{cases}a=1\\b=1\end{cases}}\)
\(+,a=1\Rightarrow b^{10}=b^{11}=b^{12}\Rightarrow b=1\left(\text{vì b dương}\right)\)
\(+,b=1\Rightarrow a^{10}=a^{11}=a^{12}\Rightarrow a=1\left(\text{vì a dương}\right)\)
\(\text{nên: a=b=1}\)
\(\text{Vậy: P=2011a-2012b=2011-2012=-1}\)