Cho góc nhọn xOy >50 độ,lấy điểm A trên tia Ox (điểm A khác điểm O) và điểm B trên tia Oy sao cho OA=OB.Gọi H là trung điểm của đoạn AB.
a)Chứng minh ΔOAH =ΔOBH
b)Trên tia OH lấy điểm M sao cho OM>OH .Chứng minh AM=MB
c)Qua M kẻ đường thẳng song song với AB cắt Ox tại E và Oy tại K. Chứng minh : OH⊥EK và OM là đường trung trực của đoạn thẳng EK
d)Gọi giao điểm của AK và BE là điểm S .Chứng minh tia OS là tia phân giác của góc xOy
a) Xét ΔOHA và ΔOHB có
OA=OB(gt)
OH là cạnh chung
HA=HB(do H là trung điểm của AB)
Do đó: ΔOHA=ΔOHB(c-c-c)
b) Ta có: ΔOHA=ΔOHB(cmt)
⇒\(\widehat{OHA}=\widehat{OHB}\)(hai góc tương ứng)
mà \(\widehat{OHA}+\widehat{OHB}=180^0\)
nên \(\widehat{OHA}=\widehat{OHB}=\frac{180^0}{2}=90^0\)
⇒OH⊥AB
hay MH⊥AB
Xét ΔMAB có
MH là đường cao ứng với cạnh AB(do MH⊥AB)
MH là đường trung tuyến ứng với cạnh AB(do H là trung điểm của AB)
Do đó: ΔMAB cân tại M(định lí tam giác cân)
⇒AM=MB(đpcm)
c)Ta có: OH⊥AB(cmt)
AB//EK(gt)
Do đó: OH⊥EK(định lí 2 về quan hệ giữa vuông góc và song song)
mà M∈OH(gt)
nên OM⊥EK
Ta có: ΔOHA=ΔOHB(cmt)
⇒\(\widehat{AOH}=\widehat{BOH}\)(hai góc tương ứng)
mà tia OH nằm giữa hai tia OB,OA
nên OH là tia phân giác của \(\widehat{AOB}\)
hay OM là tia phân giác của \(\widehat{KOE}\)
Xét ΔKOE có
OM là đường cao ứng với cạnh KE(do OM⊥KE)
OM là đường phân giác ứng với cạnh KE(do OM là tia phân giác của \(\widehat{KOE}\))
Do đó: ΔKOE cân tại O(định lí tam giác cân)
⇒OK=OE
Xét ΔOMK vuông tại M và ΔEOM vuông tại M có
OK=OE(cmt)
OM là cạnh chung
Do đó: ΔOMK=ΔEOM(cạnh huyền-cạnh góc vuông)
⇒KM=ME(hai cạnh tương ứng)
hay M nằm trên đường trung trực của KE(tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: OK=OE(cmt)
⇒O nằm trên đường trung trực của KE(tính chất đường trung trực của một đoạn thẳng)(2)
Từ(1) và (2) suy ra OM là đường trung trực của KE(đpcm)