Chứng minh \(\frac{n+2019}{n+2020}\) là phân số tối giản
Thật ra mình biết làm rồi chỉ muốn đố thôi
Ai nhanh mình tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN(n + 2019 ; n + 2020) = d \(\left(d\inℕ^∗\right)\)
=> \(\hept{\begin{cases}n+2019⋮d\\n+2020⋮d\end{cases}\Rightarrow n+2020-\left(n+2019\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> \(\frac{n+2019}{n+2020}\)là phân số tối giản
\(\frac{n+2019}{n+2020}\)
+) Gọi d = ƯCLN ( n + 2019 ; n+2020 ) ( d là số tự nhiên )
\(\Rightarrow\hept{\begin{cases}n+2019⋮d\\n+2020⋮d\end{cases}}\)
\(\Rightarrow n+2020-n+2019⋮d\)
\(\Rightarrow1⋮d\)
Mà d là số tự nhiên
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\) ( n+2019; n+2020 ) =1
\(\Rightarrow\) P/s \(\frac{n+2019}{n+2020}\) tối giản
@@ Học tốt @@
## Chiyuki Fujito
Đặt \(d=\left(n+1,3n+2\right)\).
Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Đặt \(d=\left(2n+1,4n+3\right)\).
Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Giả sử 7n+3 và 5n+2 có nghiệm nguyên tố là d trong đó d>1.
Khi đó 7n+3 chia hết cho d
=> 5(7n+3) chia het cho d hay 35n+15 chc d (1)
5n+2 chc d
=>7(5n+2) chc d
hay 35n+14 chc d (2)
Tu 1 va 2 ta suy ra 35n+15-(35n+14) chc d hay 1 chc d =>d=1(vô lý với giả thiết vậy phân số đã tối giản
Gọi d = ƯCLN(7n + 3; 5n + 2) (\(d\in\)N*)
=> 7n + 3 chia hết cho d; 5n + 2 chia hết cho d
=> 5.(7n + 3) chia hết cho d; 7.(5n + 2) chia hết cho d
=> 35n + 15 chia hết cho d; 35n + 14 chia hết cho d
=> (35n + 15) - (35n + 14) chia hết cho d
=> 35n + 15 - 35n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(7n + 3; 5n + 2) = 1
=> phân số \(\frac{7n+3}{5n+2}\)là phân số tối giản (đpcm)
Ta gọi UWCLN của 2n-1 và 4n+2 là d
Ta có 2n-1 chia het cho d vậy 4n-2 chia hết cho d
4n+2 chia hết cho d vậy 4n+2-4n-2 chia het cho d
Vậy 4 chia hết cho d nên d=1 để 2n-1/4n+2 là tối giản
Vậy 2n-1/4n+2 là tối giản
1)
gọi ƯC(3n-2,4n-3) là d
=>\(\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\Rightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1;-1\)
=>ƯC(3n-2,4n-3)={1;-1}
=>\(\frac{3n-2}{4n-3}\)là p/số tối giản
vậy...
Mình cũng là cn của nick trên muốn gợi ý cho các bạn 2 số này là 2 số nguyên tố cùng nhau chỉ cần chứng minh như vậy