Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có n+1/2n+3 gọi ƯCLN 2 số là d
n+1 chia hết cho d
2n+3 chia hết cho d
=> 2n+3-2(n+1) chia hết cho d
vậy 1 chia hết cho d => a tối giản
b) gọi ƯCLN 2 số là d
2n+3 chia hết cho d
4n+8 chia hết cho d
=> 1/2(4n+8)- 2n-3 chia hết cho d
2n+4-2n-3 chia hết cho d => 1 chia hết cho d
vậy b tối giản
Giả sử 7n+3 và 5n+2 có nghiệm nguyên tố là d trong đó d>1.
Khi đó 7n+3 chia hết cho d
=> 5(7n+3) chia het cho d hay 35n+15 chc d (1)
5n+2 chc d
=>7(5n+2) chc d
hay 35n+14 chc d (2)
Tu 1 va 2 ta suy ra 35n+15-(35n+14) chc d hay 1 chc d =>d=1(vô lý với giả thiết vậy phân số đã tối giản
Gọi d = ƯCLN(7n + 3; 5n + 2) (\(d\in\)N*)
=> 7n + 3 chia hết cho d; 5n + 2 chia hết cho d
=> 5.(7n + 3) chia hết cho d; 7.(5n + 2) chia hết cho d
=> 35n + 15 chia hết cho d; 35n + 14 chia hết cho d
=> (35n + 15) - (35n + 14) chia hết cho d
=> 35n + 15 - 35n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(7n + 3; 5n + 2) = 1
=> phân số \(\frac{7n+3}{5n+2}\)là phân số tối giản (đpcm)
gọi số cần tìm là a.ta có:a=4n+3
=17m+9
=19k+13
\(\Rightarrow a+25=4n+3+25=4n+28=4\left(n+7\right)⋮4\)
\(=17m+9+25=17m+34=17\left(m+2\right)⋮17\)
\(=19k+13+25=19k+38=19\left(k+2\right)⋮19\)
\(\Rightarrow a+25⋮17,4,19\)
\(\Rightarrow a+25⋮1292\)
\(\Rightarrow a=1292k-25\)\(=1292\left(k-1\right)+1267\)
do 1267<1292 nên số dư của phép chia là 1267
2,
gọi ƯCLN[2n+1,2n(n+1)] là d
\(\Rightarrow2n+1⋮d,2n\left(n+1\right)⋮d\)
\(\Rightarrow n\left(2n+1\right)⋮d,2n^2+2n⋮d\)
\(\Rightarrow2n^2+n⋮d,2n^2+2n⋮d\)
\(\Rightarrow\left(2n^2+2n\right)-\left(2n^2+n\right)⋮d\)
\(\Rightarrow n⋮d\)
MÀ \(2n+1⋮d,n⋮d\Rightarrow2n⋮d\Rightarrow1⋮d\Rightarrow d=1\)
suy ra đpcm
Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)= \(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1
gọi d là ước chung lớn nhất của 2n+3 và 4n+8.
suy ra ((4n+8) - (2n+3)) chia hết cho d
((4n+8) - (2n+3) + (2n+3)) chia hết cho d
(4n-8 - 2n-3 - 2n-3) chia hết cho d
2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.
a)gọi d là ƯCLN (3n-1;6n-3)
\(\Rightarrow\hept{\begin{cases}3n-1⋮d\\6n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n-2⋮d\\6n-3⋮d\end{cases}}\)
=> (6n-3)-(6n-2)\(⋮\)d
\(\Rightarrow1⋮d\)
=>d=1
\(\Rightarrow\frac{3n-1}{6n-3}\)là pstg(ĐCCM)
b) Gọi d là ƯCLN(2n+11;3n+16)
\(\Rightarrow\hept{\begin{cases}2n+11⋮d\\3n+16⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+33⋮d\\6n+32⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+33\right)-\left(6n+32\right)⋮d\)
\(\Rightarrow1⋮d\)
=>d=1
Vậy\(\frac{2n+11}{3n+16}\) Là pstg(ĐCCM)
Tớ giải xong rồi ai nhớ nha k cho tôi đi.
Ta có: đặt UC(4n+1,6n+1)=d
\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}\Leftrightarrow}3\left(4n+1\right)-2\left(6n+1\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy phân số tối giản với mọi n thuộc N*
Bài 1 .
a) Gọi d \(\in\)ƯC ( n + 1 , 2n + 3 ) . Ta có :
2n + 3 - 2( n + 1 ) \(⋮\)cho d
\(\Rightarrow\)1 chia hết cho d => d = + , - 1
b ) Gọi d \(\in\)ƯC ( 2n + 3 , 4n + 8 ) . Ta có :
4n + 8 - 2( 2n + 3 ) \(⋮\)cho d
\(\Rightarrow\)2 chia hết cho d . Do đó d là Ư của số lẻ 2n + 3 nên d = + , - 1
c ) Xét buểu thức 5( 3n + 2 ) - 3( 5n + 3 ).
\(\frac{n+3}{n+4}\)
Gọi d=U7CLN(n+3,n+4)
\(\Rightarrow\hept{\begin{cases}\left(n+3\right)⋮d\\\left(n+4\right)⋮d\end{cases}}\)
\(\Leftrightarrow\left(n+4\right)-\left(n+3\right)⋮d\)
\(\Leftrightarrow1⋮d\) \(\Leftrightarrow d=1\)
Vậy \(\frac{n+3}{n+4}\)là phân số tối giản
( *Bạn làm theo pp: Phân số tối giản khi U7CLN(tử,mẫu)=1
*Cái dòng (n+4) - (n+3) thì mấy bài tương tự, cái dòng đó ta sẽ lấy số lớn trừ số nhỏ chứ không nhất thiết phải lấy số dưới trừ số trên)
Mấy bài kia bạn làm tương tự nha! Chúc bạn học giỏi!!!
Ta gọi UWCLN của 2n-1 và 4n+2 là d
Ta có 2n-1 chia het cho d vậy 4n-2 chia hết cho d
4n+2 chia hết cho d vậy 4n+2-4n-2 chia het cho d
Vậy 4 chia hết cho d nên d=1 để 2n-1/4n+2 là tối giản
Vậy 2n-1/4n+2 là tối giản