K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

a)gọi d là ƯCLN (3n-1;6n-3)

\(\Rightarrow\hept{\begin{cases}3n-1⋮d\\6n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n-2⋮d\\6n-3⋮d\end{cases}}\)

=> (6n-3)-(6n-2)\(⋮\)d

\(\Rightarrow1⋮d\)

=>d=1

\(\Rightarrow\frac{3n-1}{6n-3}\)là pstg(ĐCCM)

b) Gọi d là ƯCLN(2n+11;3n+16)

\(\Rightarrow\hept{\begin{cases}2n+11⋮d\\3n+16⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+33⋮d\\6n+32⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+33\right)-\left(6n+32\right)⋮d\)

\(\Rightarrow1⋮d\)

=>d=1

Vậy\(\frac{2n+11}{3n+16}\) Là pstg(ĐCCM)

Tớ giải xong rồi ai nhớ nha k cho tôi đi. 

Bài 1 .

a) Gọi d \(\in\)ƯC ( n + 1 , 2n + 3 ) . Ta có :

2n + 3 - 2( n + 1 ) \(⋮\)cho d

\(\Rightarrow\)1 chia hết cho d => d = + , - 1

b ) Gọi d \(\in\)ƯC ( 2n + 3 , 4n + 8 ) . Ta có :

4n + 8 - 2( 2n + 3 ) \(⋮\)cho d

\(\Rightarrow\)2 chia hết cho d . Do đó d là Ư của số lẻ 2n + 3 nên d = + , - 1

c ) Xét buểu thức 5( 3n + 2 ) - 3( 5n + 3 ).

DD
11 tháng 4 2021

a) Đặt \(d=\left(n+3,2n+7\right)\).

Suy ra 

\(\hept{\begin{cases}n+3⋮d\\2n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+7⋮d\end{cases}}\Rightarrow\left(2n+7\right)-2\left(n+3\right)=1⋮d\)

\(\Rightarrow d=1\).

Do đó ta có đpcm.

b) Tương tự ý a).

11 tháng 4 2021

trả lời giúp mình nnhe bạn

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

11 tháng 4 2021

a,Gọi ƯCLN(n+3,2n+7)=d

n+3⋮d ⇒2n+6⋮d

2n+7⋮d ⇒2n+7⋮d

(2n+7)-(2n+6)⋮d

1⋮d ⇒ƯCLN(n+3,2n+7)=1

Vậy phân số n+3/2n+7 là phân số tối giản

11 tháng 4 2021

a,Gọi ƯCLN(3n+7,6n+15)=d

3n+7⋮d ⇒6n+14⋮d

6n+15⋮d ⇒6n+15⋮d

(6n+15)-(6n+14)⋮d

1⋮d ⇒ƯCLN(3n+7,6n+15)=1

Vậy phân số 3n+7/6n+15 là phân số tối giản

8 tháng 2 2018

Phân số \(\frac{2n+3}{3n+5}\)tối giản nếu ước chung lớn nhất của tử và mẫu là 1 hoặc -1

Gọi \(ƯCLN\left(2n+3;3n+5\right)=d\)ta có :

\(\left(2n+3\right)⋮d;\left(3n+5\right)⋮d\)

\(\Leftrightarrow\)\(3\left(2n+3\right)⋮d;2\left(3n+5\right)⋮d\)

\(\Leftrightarrow\)\(\left(6n+9\right)⋮d;\left(6n+10\right)⋮d\)

\(\Leftrightarrow\)\(\left(6n+9-6n-10\right)⋮d\)

\(\Leftrightarrow\)\(\left(-1\right)⋮d\)

Suy ra \(d\inƯ\left(-1\right)\)

Mà \(Ư\left(-1\right)=\left\{1;-1\right\}\)

Do đó \(d\in\left\{1;-1\right\}\)

Vật phân số \(\frac{2n+3}{3n+5}\)tối giản 

19 tháng 2 2018

Gọi \(ƯCLN\left(2n+5;3n+7\right)\) là \(d\)

\(\Rightarrow\)\(\left(2n+5\right)⋮d\) và \(\left(3n+7\right)⋮d\)

\(\Rightarrow\)\(3\left(2n+5\right)⋮d\) và \(2\left(3n+7\right)⋮d\)

\(\Rightarrow\)\(\left(6n+15\right)⋮d\) và \(\left(6n+14\right)⋮d\)

\(\Rightarrow\)\(\left(6n+15\right)-\left(6n+14\right)⋮d\)

\(\Rightarrow\)\(\left(6n-6n+15-14\right)⋮d\)

\(\Rightarrow\)\(1⋮d\)

\(\Rightarrow\)\(d\inƯ\left(1\right)\)

Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(ƯCLN\left(2n+5;3n+7\right)=\left\{1;-1\right\}\)

Vậy \(\frac{2n+5}{3n+7}\) là phân số tối giản 

19 tháng 2 2018

a        Gọi ước chung của 2n+5 và 3n+7 là n

        2n+5 ⋮ x=>6n+15⋮x 

       3n+7  ⋮ x =>6n+14 ⋮x

        =>1 chia hết x=> x thuộc ước của 1

          Vậy phân số đó tối giản

b       6n-14 chia hết x

         2n-5 chia hết x=>6n-15 chia hết x

        =>1 chia hết x=> x thuộc ước của 1

        Vậy phân số đó tối giản

22 tháng 2 2018

a, \(\frac{3n-2}{4n-3}\) 

Gọi ƯCLN ( 3n - 2 ; 4n - 3 ) là d .

\(\Rightarrow\) 3n - 2 ⋮ d

          4n - 3 ⋮ d 

\(\Rightarrow\) 4n - 3 + 3n - 2 ⋮ d

\(\Rightarrow\)( 12n - 9 )+ ( 12n - 8 ) ⋮ d

\(\Rightarrow\) ( 12n - 12n ) + ( 9 - 8 ) ⋮ d

\(\Rightarrow\) 1 ⋮ d

\(\Rightarrow\) d = 1 .

\(\Rightarrow\) 4n - 3 và 3n - 2 là hai số nguyên tố cùng nhau . 

Vậy \(\frac{3n-2}{4n-3}\) là phân số tối giản .

b, \(\frac{4n+1}{6n+1}\) 

Gọi  ƯCLN ( 4n + 1 ; 6n + 1 ) là d .

\(\Rightarrow\) 4n + 1 ⋮ d 

         6n + 1 ⋮ d

\(\Rightarrow\) 4n + 1 - 6n + 1 ⋮ d

\(\Rightarrow\) ( 12n + 3 ) - ( 12n + 2 ) ⋮ d.

.\(\Rightarrow\) ( 12n - 12n ) + ( 3 - 2 ) ⋮ d

\(\Rightarrow\) 1 ⋮ d

\(\Rightarrow\) d = 1

\(\Rightarrow\) 4n + 1 và 6n + 1 là hai số nguyên tố cùng nhau .

Vậy \(\frac{4n+1}{6n+1}\) là phân số tối giản .

:)

Chúc bạn học tốt !

22 tháng 2 2018

a) Để phân số \(\frac{3n-2}{4n-3}\)là phân số tối giản 

=> ƯCLN ( 3n - 2 ; 4n - 3 ) = 1

Gọi ƯCLN ( 3n - 2 ; 4n - 3 ) = d

=> 3n - 2 \(⋮\)d và 4n - 3 \(⋮\)d ( 1 )

Từ ( 1 ) 

=> 4 . ( 3n - 2 )  \(⋮\)d và 3 . ( 4n - 3 )  \(⋮\)

=> 12n - 8  \(⋮\)d và 12n - 9  \(⋮\)d  ( 2 )

Từ ( 2 )

=> ( 12n - 9 ) - ( 12n - 8 )  \(⋮\)

=> 1  \(⋮\)

=> d \(\in\)Ư ( 1 )

=> d = 1

=>  Phân số \(\frac{3n-2}{4n-3}\)là phân số tối giản với mọi n \(\in\)\(ℕ^∗\)

14 tháng 4 2019

Bạn chọn vào câu tương tự của bạn trên OLM sẽ có bài tham khảo nha

=))) Mong bạn hiểu

Mik chưa bt làm nên cho bn coi bài của ngta =))

14 tháng 4 2019

a) Gọi (3n-2,4n-3) = d

=>\(\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\)=>\(\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)

=>\(\left(12n-8\right)-\left(12n-9\right)⋮d\)

=>\(1⋮d\)

=>\(d=1\)=>\(\frac{3n-2}{4n-3}\)là phân số tối giản

b) Gọi  (4n+1,6n+1) = d

=>\(\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}}\)=>\(\hept{\begin{cases}3\left(4n+1\right)⋮d\\2\left(6n+1\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}12n+3⋮d\\12n+2⋮d\end{cases}}\)

=> \(\left(12n+3\right)-\left(12n+2\right)⋮d\)

=> \(1⋮d\)

=> \(d=1\)

=> \(\frac{4n+1}{6n+1}\)là phân số tối giản