K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

Ta có : \(\left|x-6\right|\ge0\)

Mà theo đề bài : \(\left|x-6\right|\le0\)

\(\Leftrightarrow\left|x-6\right|=0\)

\(\Leftrightarrow x-6=0\)

\(\Leftrightarrow x=6\)

Vậy x = 6

7 tháng 2 2020

Ta có \(|\)x-6\(|\)\(\ge\)0

Mà theo bài ra ta có \(|\)x-6\(|\)\(\le\)0

\(\Rightarrow\)\(|\)x-6\(|\)=0

\(\Rightarrow\)x-6=0

\(\Rightarrow\)x=6

6 tháng 2 2020

(3x - 1)^2016 + (5y - 3)^2016 < 0    (1)

có (3x - 1)^2016 > 0 

     (5y - 3)^2018 > 0

=> (3x-1)^2016  + (5y - 3)^2018 > 0    và (1)

=> (3x - 1)^2016 + (5y - 3)^2016 = 0

=> 3x - 1 = 0 và 5y - 3 = 0

=> x = 1/23 và y = 3/5

6 tháng 2 2020

Thông cảm máy chụp đểu

25 tháng 2 2016

Giá trị của x là 2

duyệt đi

25 tháng 2 2016

\(\left(x-2\right)^2\ge0\)nên để thỏa mãn đề thì (x - 2)2 = 0 <=> x - 2 = 0 <=> x = 2

\(\Leftrightarrow-\dfrac{3}{4}< =x< =\dfrac{1}{2}\)

hay x=0

28 tháng 2 2016

(x-2)2 <= 0 <=>(x-2)2=0 và (x-2)2 < 0

 mà (x-2)2>= 0 với mọi x

=>(x-2)2=0<=>x-2=0<=>x=2

 vậy x=2

(x-2)2 <= 0 <=>(x-2)2=0 và (x-2)2 < 0

 mà (x-2)2>= 0 với mọi x

=>(x-2)2=0<=>x-2=0<=>x=2

 vậy x=2

8 tháng 4 2021

Ta có: \(\hept{\begin{cases}\left(2021x-1\right)^{2020}\ge0\\\left(3y+4\right)^{2022}\ge0\end{cases}}\left(\forall x,y\right)\)

\(\Rightarrow\left(2021x-1\right)^{2020}+\left(3y+4\right)^{2022}\ge0\left(\forall x,y\right)\)

Mà theo đề bài ta có: \(\left(2021x-1\right)^{2020}+\left(3y+4\right)^{2022}\le0\)

Nên từ đó suy ra: \(\hept{\begin{cases}\left(2021x-1\right)^{2020}=0\\\left(3y+4\right)^{2022}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2021x-1=0\\3y+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2021}\\y=-\frac{4}{3}\end{cases}}\)

Khi đó \(M=2021\cdot\frac{1}{2021}\cdot\left(-\frac{4}{3}\right)-\left(-\frac{4}{3}\right)^2\)

\(=-\frac{4}{3}-\frac{16}{9}=-\frac{28}{9}\)

9 tháng 11 2019

Ta có : \(\hept{\begin{cases}\left(x-2\right)^4\ge0\forall x\\\left(2y-1\right)^{2018}\ge0\forall y\end{cases}\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2018}\ge0\forall x,y}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2\right)^4=0\\\left(2y-1\right)^{2018}=0\end{cases}\Rightarrow\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\2y=1\end{cases}}}\Rightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)

Khi đó : \(M=11.2^2.\frac{1}{2}+4.2.\left(\frac{1}{2}\right)^2=\frac{11.4}{2}+\frac{4.2}{4}=22+2=24\)

Vậy M = 24

NV
20 tháng 8 2021

\(\Leftrightarrow6\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+20=\dfrac{5\left(x+y\right)\left(xy+3\right)}{xy}\ge\dfrac{5\left(x+y\right)2\sqrt{3xy}}{xy}=10\sqrt{3}\left(\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{y}{x}}\right)\)

Đặt \(\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{y}{x}}=t\ge2\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}=t^2-2\)

\(\Rightarrow6\left(t^2-2\right)+20\ge10\sqrt{3}t\)

\(\Rightarrow3t^2-5\sqrt{3}t+4\ge0\)

\(\Rightarrow\left(\sqrt{3}t-1\right)\left(\sqrt{3}t-4\right)\ge0\)

Do \(t\ge2\Rightarrow\sqrt{3}t-1>0\)

\(\Rightarrow\sqrt{3}t-4\ge0\Rightarrow t\ge\dfrac{4}{\sqrt{3}}\)

\(\Rightarrow t^2\ge\dfrac{16}{3}\Rightarrow t^2-2\ge\dfrac{10}{3}\)

\(\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}\ge\dfrac{10}{3}\) (do \(\dfrac{x}{y}+\dfrac{y}{x}=t^2-2\))

Vậy \(A_{min}=\dfrac{10}{3}\) khi \(\left(x;y\right)=\left(1;3\right);\left(3;1\right)\)

8 tháng 1 2024

khó thế