K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 2 2020

Gọi M là trung điểm AB, kẻ trung trực của AB và trung trực của AC (đồng thời là phân giác góc B) cắt nhau tại O \(\Rightarrow\) O là tâm đường tròn ngoại tiếp ABC.

Ta có \(BM=\frac{1}{2}AB=6\) ; \(\widehat{MBO}=\frac{1}{2}\widehat{B}=60^0\)

Trong tam giác vuông \(MBO\) có:

\(cos\widehat{MBO}=\frac{BM}{BO}\Rightarrow R=BO=\frac{BM}{cos\widehat{MBO}}=\frac{6}{cos60^0}=12\)

21 tháng 1 2023

\(\dfrac{BC}{\sin A}=\dfrac{AC}{\sin B}=\dfrac{AB}{\sin C}=2R\)

\(R=\dfrac{AB}{2.\sin C}=\dfrac{12}{2.\sin30}=12cm\)

\(\Rightarrow\) Chọn D

21 tháng 1 2023

Cho ΔABC cân tại B có góc ABC=1200,AB=12cm và nội tiếp (O).Bán kính của (O) bằng

A.10cm      B.9cm      C.8cm       D.12cm

2 tháng 5 2022

Đặt \(AB=a;AC=b;BC=a\) . Ta có : \(p=\dfrac{a+b+c}{2}=18\)

S = \(\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=54\) \(=pr=18r\Rightarrow r=3\)  (cm) 

a) Ta có: ΔABC cân tại A

mà AH là đường cao ứng với cạnh BC

nên AH là đường trung tuyến ứng với cạnh BC

Ta có: AB=AC

nên A nằm trên đường trung trực của BC\(\left(1\right)\)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC\(\left(2\right)\)

Ta có: HB=HC

nên H nằm trên đường trung trực của BC(3)

Từ (1), \(\left(2\right),\left(3\right)\) suy ra A,O,H thẳng hàng

\(\Leftrightarrow A,O,H,D\) thẳng hàng

hay AD là đường kính của \(\left(O\right)\)

13 tháng 3 2016

BC và AK cắt BC tại H.Ta có HB=HC (AK là trung trực của BC) 
=>HC=BC/2. 
AH=√(AC²-CH²); 
∆ACH~∆COH (tam giác vuông chung góc nhọn tại O) 
=>AH/AC=HC/CO=>CO=AC.HC/AH. 
=20.12/√(20²-12²)=20.12/16=15.

13 tháng 3 2016

 Gọi AH, BK là hai đường cao, có AH = 10; BK = 12 
thấy hai tgiác CAH và CBK đồng dạng => CA/AH = CB/BK 
=> CA/10= 2CH/12 => CA = 2,6.CH (1) 
mặt khác áp dụng pitago cho tgiac vuông HAC: 
CA² = CH² + AH² (2) 

thay (1) vào (2): 2,6².CH² = CH² + 102 
=> (2,6² - 1)CH² = 102=> CH = 10 /2,4 = 6,5 
=> BC = 2CH = 13 cm 

2 tháng 4 2020

Pika...........................chịu!

>-<