Bài tập: Cho ΔABC có A(2; 1); B(4; 2); C(1; 0)
a) Tính chu vi
b) Tính cos BCA
c) Tìm toạ độ điểm D sao cho tứ giác ABCD là hình bình hành
d) Tìm toạ độ điểm H là hình chiếu của A trên BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔADB và ΔADE có
AB=AE(gt)
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))
AE chung
Do đó: ΔADB=ΔADE(c-g-c)
\(\overrightarrow{AB}=\left(1;1\right)\Rightarrow AB=\sqrt{2}\)
\(\Rightarrow d\left(C;AB\right)=h_a=\dfrac{2S_{ABC}}{AB}=\dfrac{3\sqrt{2}}{2}\)
Gọi M là trung điểm AB, K là chân đường vuông góc hạ từ G xuống AB \(\Rightarrow GK||CH\) (cùng vuông góc AB)
Áp dụng định lý Talet: \(\dfrac{GK}{CH}=\dfrac{GM}{CM}=\dfrac{1}{3}\) (t/c trọng tâm)
\(\Rightarrow\dfrac{d\left(G;AB\right)}{d\left(C;AB\right)}=\dfrac{1}{3}\Rightarrow d\left(G;AB\right)=\dfrac{1}{3}d\left(C;AB\right)=\dfrac{\sqrt{2}}{2}\)
Do G thuộc \(3x-y-8=0\Rightarrow\) tọa độ G có dạng \(G\left(a;3a-8\right)\)
Phương trình AB: \(1\left(x-2\right)-1\left(y+3\right)=0\Leftrightarrow x-y-5=0\)
\(d\left(G;AB\right)=\dfrac{\left|a-\left(3a-8\right)-5\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left|2a-3\right|=1\Rightarrow\left[{}\begin{matrix}a=2\Rightarrow G\left(2;-2\right)\\a=1\Rightarrow G\left(1;-5\right)\end{matrix}\right.\)
Áp dụng công thức trọng tâm: \(\left\{{}\begin{matrix}x_C=3x_G-x_A-x_B\\y_C=3y_G-y_A-y_B\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}C\left(1;-1\right)\\C\left(-2;-10\right)\end{matrix}\right.\)
Đường cao CH đi qua C và vuông góc AB nên nhận \(\left(1;1\right)\) là vtpt
Có 2 đường thỏa mãn: \(\left[{}\begin{matrix}1\left(x-1\right)+1\left(y+1\right)=0\\1\left(x+2\right)+1\left(y+10\right)=0\end{matrix}\right.\) \(\Leftrightarrow...\)
1:
a: AB<AC
=>góc B>góc C
góc ADB=góc C+góc CAD
góc ADC=góc B+góc BAD
mà góc C<góc B và góc CAD=góc BAD
nên góc ADB<góc ADC
b: Sửa đề; AE=AB
Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
=>ΔABD=ΔAED
=>góc ABD=góc AED
Bài 2:
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
b: HB=HC=BC/2=9(cm)
nên AH=12(cm)
c: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔANH
Suy ra: AM=AN
d: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
Bài 2 tham khảo
a) Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
b) HB=HC=BC/2=9(cm)
nên AH=12(cm)
c) Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
ˆMAH=ˆNAHMAH^=NAH^
Do đó: ΔAMH=ΔANH
Suy ra: AM=AN
d) Xét ΔABC có AM/AB=AN/AC
nên MN//BC
a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{C}\) chung
Do đó: ΔABC\(\sim\)ΔHAC(g-g)
b) Áp dụng định lí Pytago vào ΔACB vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{BD}{6}=\dfrac{CD}{8}\)
mà BD+CD=BC=10cm(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{6}=\dfrac{CD}{8}=\dfrac{BD+CD}{6+8}=\dfrac{10}{14}=\dfrac{5}{7}\)
Do đó: \(\dfrac{BD}{6}=\dfrac{5}{7}\)
hay \(BD=\dfrac{30}{7}cm\)
Vậy: \(BD=\dfrac{30}{7}cm\)
=>O là trung điểm của AB
\(\Leftrightarrow\left\{{}\begin{matrix}x_A+x_B=0\\y_A+y_B=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_B=2\\y_B=-1\end{matrix}\right.\)
\(\overrightarrow{CA}=\left(x_A-x_C;y_A-y_C\right)=\left(-2-x_C;-1\right)\)
\(\overrightarrow{CB}=\left(x_B-x_C;y_B-y_C\right)=\left(2-x_C;-3\right)\)
Để ΔABC vuông tại C thì \(-4+x_C^2+3=0\)
\(\Leftrightarrow x_C\in\left\{1;-1\right\}\)
\(\overrightarrow{AB}=\left(2;1\right);\overrightarrow{CB}=\left(3;2\right);\overrightarrow{CA}=\left(1;1\right)\)
\(\Rightarrow AB=\sqrt{5};BC=\sqrt{13};AC=\sqrt{2}\)
\(\Rightarrow AB+BC+AC=\sqrt{2}+\sqrt{5}+\sqrt{13}\)
\(cos\widehat{BCA}=\frac{BC^2+AC^2-AB^2}{2BC.AC}=\frac{5\sqrt{26}}{26}\)
ABCD là hbh \(\Rightarrow\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow\left\{{}\begin{matrix}1-x_D=2\\-y_D=1\end{matrix}\right.\) \(\Rightarrow D\left(-1;-1\right)\)
Do \(AH\perp BC\Rightarrow AH\) nhận \(\left(3;2\right)\) là 1 vtpt
Phương trình AH:
\(3\left(x-2\right)+2\left(y-1\right)=0\Leftrightarrow3x+2y-8=0\)
Phương trình BC:
\(2\left(x-1\right)-3y=0\Leftrightarrow2x-3y-2=0\)
Tọa độ H là nghiệm \(\left\{{}\begin{matrix}3x+2y-8=0\\2x-3y-2=0\end{matrix}\right.\) \(\Rightarrow H\left(\frac{28}{13};\frac{10}{13}\right)\)