K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

Bài 5. ÔN TẬP CUỐI NĂM

Tâm đường tròn bàng tiếp góc D có phải trung điểm của AH đâu? Xem lại đề đi anh.

7 tháng 2 2020

À, a ghi thiếu đề, từ H kẻ PQ

28 tháng 4 2018
a) xét tam giác ABC và tam giác HBA có: BAC=BHA (90°) B chung => tam giác ABC~ tam giác HBA (g.g) b) Áp dụng định lý py ta go trong tam giác ABC vuông tại A BC 2 = AC 2 + AB 2 BC 2 = (4,5)2 + (6)2 BC 2 = 20.25 + 36 BC 2 = 56.25 BC = căn 56.25 = 7.5 (cm) c) Áp dụng định lý đảo ta lét ta có AE/ AB = AF / AC (E € AB, F € AC) => EF// BC
24 tháng 4 2019

a)  Tam giác ABO và tam giác AEO có:

Góc AOB = góc AOE (=90 độ)

Góc BAO = góc EAO (AO là phân giác góc BAE)

Cạnh AO chung

=> tam giác ABO = tam giác AEO (g-c-g)    (1)

b)  Từ (1) => AB = AE => tam giác BAE cân tại A      (2)

c)  Từ (2) => AO là đường cao cũng là trung tuyến của tam giác BAE 

=> AD là đường trung trực của BE

d)  Tam giác BAE có hai đường cao AO và BK cắt nhau tại M nên M là trực tâm.

Gọi H là giao điểm của EM và AB => EH  đi qua trực tâm M nên là đường cao thứ ba của tam giác BAE

=> EM vuông góc AB

mà BC vuông góc AB (gt)

=> EM // BC

a) Sửa đề: 5 điểm A,B,D,F,E cùng thuộc một đường tròn

Xét tứ giác ABFE có

\(\widehat{AFB}=\widehat{AEB}\left(=90^0\right)\)

\(\widehat{AFB}\) và \(\widehat{AEB}\) là hai góc cùng nhìn cạnh AB

Do đó: ABFE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Suy ra: A,B,F,E cùng thuộc 1 đường tròn(1)

Xét tứ giác ABDE có 

\(\widehat{ADB}=\widehat{AEB}\left(=90^0\right)\)

\(\widehat{ADB}\) và \(\widehat{AEB}\) là hai góc cùng nhìn cạnh AB

Do đó: ABDE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Suy ra: A,B,D,E cùng thuộc 1 đường tròn(2)

Từ (1) và (2) suy ra A,B,D,F,E cùng thuộc 1 đường tròn(đpcm)

Tâm I của đường tròn này là trung điểm của AB

a: \(\widehat{B}=\widehat{BAD}=\widehat{CAD}\)

c: \(\widehat{ABD}=\widehat{EDF}\)

\(\widehat{BAD}=\widehat{EDA}\)

mà \(\widehat{ABD}=\widehat{BAD}\)

nên \(\widehat{EDF}=\widehat{EDA}\)

hay DE là tia phân giác của góc ADC

\(\widehat{DEF}=\widehat{ADE}\)

\(\widehat{CEF}=\widehat{CAD}\)

mà \(\widehat{ADE}=\widehat{CAD}\)

nên \(\widehat{DEF}=\widehat{CEF}\)

hay EF là tia phân giác của góc EDC