K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\widehat{B}=\widehat{BAD}=\widehat{CAD}\)

c: \(\widehat{ABD}=\widehat{EDF}\)

\(\widehat{BAD}=\widehat{EDA}\)

mà \(\widehat{ABD}=\widehat{BAD}\)

nên \(\widehat{EDF}=\widehat{EDA}\)

hay DE là tia phân giác của góc ADC

\(\widehat{DEF}=\widehat{ADE}\)

\(\widehat{CEF}=\widehat{CAD}\)

mà \(\widehat{ADE}=\widehat{CAD}\)

nên \(\widehat{DEF}=\widehat{CEF}\)

hay EF là tia phân giác của góc EDC

bai 1: cho tam giác ABC có góc a bằng 120 độ, phân giác Ad. Kẻ DH vuông góc với AD, DE vung góc với AC. Trên các đoạn EB và FC lấy hai điểm I và K sao cho EI = FKa) chứng minh tam giác DEF là tam giác đềub) chứng minh tam giác DIK là tam giác cânc) Từ C kẻ đường thẳng song song với AD cắt BA tại M. Chứng minh tam giác MAC là tam giác đều. Tính AD biết CM=m và CF=nbai 2: cho  góc nhọn xOy...
Đọc tiếp

bai 1: cho tam giác ABC có góc a bằng 120 độ, phân giác Ad. Kẻ DH vuông góc với AD, DE vung góc với AC. Trên các đoạn EB và FC lấy hai điểm I và K sao cho EI = FK

a) chứng minh tam giác DEF là tam giác đều

b) chứng minh tam giác DIK là tam giác cân

c) Từ C kẻ đường thẳng song song với AD cắt BA tại M. Chứng minh tam giác MAC là tam giác đều. Tính AD biết CM=m và CF=n

bai 2: cho  góc nhọn xOy . Điểm H nằm trên phân giác của góc xOy. Từ H dựng các dừong vuông góc xuống hai cạnh ox và oy( A thuộc Ox, B thuộc Oy)

a) chung minh tam giác HAB là tam giác cân

b) gọi D là hình chiếu của điểm A trên Oy, C là giao điểm của AD với OH . Chứng minh BC vuông góc với ox

c) khi góc xOy bằng 60 độ, OH = 4cm tính độ dài OA

0
6 tháng 5 2016

Huyền ơi đề bài sai nặng rồi hỏi lại đi bài 1

4 tháng 5 2016

bạn ơi đề bài này có đúng không bài 1 ý

 

21 tháng 4 2021

xét ΔABH và ΔMBH có:

\(\widehat{HMB}\)=\(\widehat{HAB}\)=90o

BH là cạnh chung

\(\widehat{MBH}\)=\(\widehat{ABH}\)(BH la phân giác của \(\widehat{MBA}\))

⇒ΔABH=ΔMBH(cạnh huyền góc nhọn)

⇒BM=AB(2 cạnh tương ứng)

⇒ΔABM cân tại B

\(\widehat{ABM}\)=\(\widehat{MAB}\)

gọi I là giao điểm của AM và BH

xét ΔMBI và ΔABI có

AB=BM(ΔABH=ΔMBH)

\(\widehat{MBH}\)=\(\widehat{ABH}\)(BH là phân giác của \(\widehat{MBA}\))

\(\widehat{ABM}\)=\(\widehat{MAB}\)(chứng minh trên)

⇒ΔMBI=ΔABI (g-c-g)

\(\widehat{MIB}\)=\(\widehat{AIB}\)(2 góc tương ứng)(1)

Mà \(\widehat{MIB}\)+\(\widehat{AIB}\)=180o(2 góc kề bù)(2)

Từ (1) và (2) \(\widehat{MIB}\)=\(\widehat{AIB}\)=\(\dfrac{180^o}{2}\)=90o

⇒BH⊥AM (Điều phải chứng minh)

xét ΔCMH và ΔNAH có:

\(\widehat{CMH}\)=\(\widehat{HAN}\)=90o

\(\widehat{CHM}\)=\(\widehat{NHA}\)(2 góc đối đỉnh)

AH=HM(ΔABH=ΔMBH)

⇒ΔCMH=ΔNAH(g-c-g)

⇒HC=HN(2 cạnh tương ứng)

⇒ΔCHN cân tại H

\(\widehat{NCH}\)=\(\widehat{CNH}\)

vì ΔABH=ΔMBH

⇒AH=HM(2 cạnh tương ứng)

⇒ΔAHM cân tại H

\(\widehat{HMA}\)=\(\widehat{HAM}\)

xét ΔNHC và ΔMHA có

\(\widehat{MHA}\)=\(\widehat{CHN}\)(2 góc đối đỉnh)

\(\widehat{HMA}\)+\(\widehat{HAM}\)=\(\widehat{NCH}\)+\(\widehat{CNH}\)

Mà \(\widehat{HMA}\)=\(\widehat{HAM}\)(chứng minh trên)và\(\widehat{NCH}\)=\(\widehat{CNH}\)(chứng minh trên)

\(\widehat{HMA}\)=\(\widehat{NCH}\)

⇒AM // CN (điều phải chứng minh)

24 tháng 4 2019

a)  Tam giác ABO và tam giác AEO có:

Góc AOB = góc AOE (=90 độ)

Góc BAO = góc EAO (AO là phân giác góc BAE)

Cạnh AO chung

=> tam giác ABO = tam giác AEO (g-c-g)    (1)

b)  Từ (1) => AB = AE => tam giác BAE cân tại A      (2)

c)  Từ (2) => AO là đường cao cũng là trung tuyến của tam giác BAE 

=> AD là đường trung trực của BE

d)  Tam giác BAE có hai đường cao AO và BK cắt nhau tại M nên M là trực tâm.

Gọi H là giao điểm của EM và AB => EH  đi qua trực tâm M nên là đường cao thứ ba của tam giác BAE

=> EM vuông góc AB

mà BC vuông góc AB (gt)

=> EM // BC