y(y2-1) = y2 - 5y + 6 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: =x^3+8-1+27x^3=28x^3+7
b: Sửa đề: (2+y)(y^2-2y+4)+(5-y)(25+5y+y^2)
=8+y^3+125-y^3
=133
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có y 2 + 5 y + 6 3 y + 6 = 2 y 2 + 5 y − 3 6 y − 3 = y + 3 3 .
![](https://rs.olm.vn/images/avt/0.png?1311)
b: (x-y)(x^2-2x+y)
\(=x^3-2x^2+xy-x^2y+2xy-y^2\)
\(=x^3-2x^2-x^2y+3xy-y^2\)
c: \(\left(x^2-y\right)\left(x+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+x^2y^2-xy-y^3-\left(x^3-y^3\right)\)
\(=x^2y^2-xy\)
d: \(3x\left(2xy-z\right)-5y\left(x^2-2\right)+3xz\)
\(=6x^2y-3xz-5x^2y+10y+3xz\)
\(=x^2y+10y\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Chọn a: \(x+5y+2\le0\) là bất phương trình bậc nhất 2 ẩn.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1: \(x^2-x-y^2-y\)
\(=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
2: \(x^2-y^2+x-y\)
\(=\left(x^2-y^2\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+1\right)\)
3: \(3x-3y+x^2-y^2\)
\(=\left(3x-3y\right)+\left(x^2-y^2\right)\)
\(=3\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y+3\right)\)
4: \(5x-5y+x^2-y^2\)
\(=\left(5x-5y\right)+\left(x^2-y^2\right)\)
\(=5\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(5+x+y\right)\)
5: \(x^2-5x-y^2-5y\)
\(=\left(x^2-y^2\right)-\left(5x+5y\right)\)
\(=\left(x-y\right)\left(x+y\right)-5\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-5\right)\)
6: \(x^2-y^2+2x-2y\)
\(=\left(x^2-y^2\right)+\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x+y\right)+2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+2\right)\)
7: \(x^2-4y^2+x+2y\)
\(=\left(x^2-4y^2\right)+\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y\right)+\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y+1\right)\)
8: \(x^2-y^2-2x-2y\)
\(=\left(x^2-y^2\right)-\left(2x+2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-2\right)\)
9: \(x^2-4y^2+2x+4y\)
\(=\left(x^2-4y^2\right)+\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)+2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y+2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(P=x\left(5x+15y\right)-5y\left(3x-2y\right)-5\left(y^2-2\right)=5x^2+15xy-15xy+10y^2-5y^2+10=5x^2+5y^2+10\)
b) P = 0
=> \(5x^2+5y^2+10=0\)
\(\Rightarrow x^2+y^2=-2\)
Mà: \(x^2+y^2\ge0\)
=> Ko có cặp (x; y) nào thỏa mãn P = 0
P = 10
=> \(5x^2+5y^2+10=10\)
=> \(x^2+y^2=0\)
Mà: \(x^2+y^2\ge0\)
=> x = 0; y = 0
a) Ta có: \(P=x\left(5x+15y\right)-5y\left(3x-2y\right)-5\left(y^2-2\right)\)
\(=5x^2+15xy-15xy+10y^2-5y^2+10\)
\(=10\)