a. X×(x-2)<0
b. (X+1)×(x-2)<0
Mọi người giải chi tiết giúp mình nha.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(1-2x< 7\)
mà: \(1-n\le1\)với mọi n
\(\Rightarrow2x=n\Rightarrow x=\frac{n}{2}\)với mọi n
b.để: (x-1).(x-2)>0
=> x-1>0hoặc x-2<0
=>x>1hoặc x<2
(mik chỉ làm 2 câu mẫu thôi, bạn cố gắng tự làm nha, rất vui được kết bạn với bạn)
\(a,\frac{2}{3}=\frac{x}{54}\)
\(\Rightarrow2.54=3x\)
\(\Rightarrow3x=108\)
\(\Rightarrow x=108:3=36\)
\(b,\frac{10}{x}=\frac{15}{6}\)
\(\Rightarrow10.6=15x\)
\(\Rightarrow15x=60\)
\(\Rightarrow x=60:15=4\)
\(c,\frac{2}{3}< \frac{x}{6}< 1\)
\(\Rightarrow\frac{4}{6}< \frac{x}{6}< \frac{6}{6}\)
\(\Rightarrow4< x< 6\)
\(\Rightarrow x=5\)
\(d,1< \frac{6}{x}< 2\)
\(\Rightarrow\frac{6}{6}< \frac{6}{x}< \frac{6}{3}\)
\(\Rightarrow6< x< 3\)
\(\Rightarrow x=5;4\)
a, 1 - 2x < 7
=> -2x < 6
=> x < -3
=> x thuộc {-4; -5; -6; ...}
b, \(\left(x-1\right)\left(x-2\right)>0\)
th1 :
\(\hept{\begin{cases}x-1< 0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 1\\x< 2\end{cases}\Rightarrow}x< 1\Rightarrow x\in\left\{0;-1;-2;...\right\}}\)
th2 :
\(\hept{\begin{cases}x-1>0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x>1\\x>2\end{cases}\Rightarrow}x>2\Rightarrow x\in\left\{3;4;5;...\right\}}\)
vậy_
c tương tự b
\(a.1-2x< 7\Leftrightarrow2x< 7+1=8\Leftrightarrow x< 8:2\Leftrightarrow x< 4\)
Vậy x < 4
\(b.\left(x-1\right)\left(x-2\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1>0;x-2>0\\x-1< 0;x-2< 0\end{cases}}\)
\(TH1\Leftrightarrow\orbr{\begin{cases}x-1>0\\x-2>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>0+1=1\\x>0+2=2\end{cases}\Rightarrow x>2}}\)
\(TH2\Leftrightarrow\orbr{\begin{cases}x-1< 0\\x-2< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 0+1=1\\x< 0+2=2\end{cases}\Rightarrow}}x< 2\)
Vậy \(x\ne2\)
a) \(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2x+10-x^2-5x=0\)
\(\Leftrightarrow-x^2-3x+10=0\)
\(\Leftrightarrow x^2+3x-10=0\)
\(\Leftrightarrow x^2-2x+5x-10=0\)
\(\Leftrightarrow x\left(x-2\right)+5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}}\)
b) \(x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(x^3-8\right)-\left(6x^2-12x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)-6x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4-6x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
c)\(16x^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(4x\right)^2-\left[3\left(x+1\right)\right]^2=0\)
\(\Leftrightarrow\left(4x-3x-1\right)\left(4x+3x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\7x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{7}\end{cases}}}\)
d) \(x^3+x=0\)
\(\Leftrightarrow x^2\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
e)\(x^2-2x-3=0\)
\(\Leftrightarrow x^2+x-3x-3=0\)
\(\Leftrightarrow x\left(x+1\right)-3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)
a) | 2x - 5 | = 13
=> 2x - 5 = 13 hoặc 2x - 5 = -13
+ Nếu 2x - 5 = 13
2x = 13 + 5
2x = 18
x = 18 : 2
x = 9
+ Nếu 2x - 5 = -13
2x = ( -13 ) + 5
2x = -8
x = ( -8 ) : 2
x = -4
=> x = { -4 ; 9 }
Tck nha
|7x + 3| = 66
7x + 3 = 66
7x = 66-3
7x = 63
x = 63 : 7
x = 9
\(x\) - 92 = (443 - \(x\)) - 150
\(x-92\) = 443 - \(x\) - 150
\(x\) + \(x\) = 443 - 150 + 92
2\(x\) = 293 + 92
2\(x\) = 385
\(x\) = \(\dfrac{385}{2}\)
Vậy \(x=\dfrac{385}{2}\)
|48 - 3\(x\)| = 0 vì |48 - 3\(x\)| ≥ 0 ∀ \(x\) ⇒ |48 - 3\(x\)| = 0
⇔ 48 - 3\(x\) = 0
3\(x=48\)
\(x=48:3\)
\(x=16\)
Vậy \(x=16\)
(x + 2)(x + 5) < 0
Th1: x + 2 > 0 => x > -2
x + 5 < 0 => x < -5
=> Vô lý
Th2: x + 2 < 0 => x < -2
x + 5 > 0 => x > -5
=> -5 < x < -2
Ta có : (x+2)(x+5)<0
=> x+2 và x+5 là hai số nguyên trái dấu
mà x+5 > x+2
=> \(\hept{\begin{cases}x+5>0\\x+2< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>-5\\x< 2\end{cases}}\)
=> \(-5< x< 2\)
=> \(x\in\left\{-4;-3;-2;-1;0;1\right\}\)
~ học tốt nha ~
a) \(x\cdot\left(x-2\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 0\\x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x>0\\x-2< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 0\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x>0\\x< 2\end{matrix}\right.\end{matrix}\right.\) ( Chọn \(x>0,x< 2\) )
Vậy : \(0< x< 2\)
a) \(x\left(x-2\right)< 0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 0\\x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x>0\\x-2< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 0\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x>0\\x< 2\end{matrix}\right.\end{matrix}\right.\Rightarrow0< x< 2\)
Vậy 0 < x < 2
b) \(\left(x+1\right)\left(x-2\right)< 0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\end{matrix}\right.\Rightarrow-1< x< 2\)
Vậy -1 < x < 2