Gọi Ot là tia phân giác của góc nhọn xOy. Lấy A \(\in\)Ot. Từ A kẻ AB \(\perp\)Ox ( B \(\in\)Ox), AC \(\perp\)Oy ( C\(\in\)Oy). Chứng minh tam giác BOC cân.
Help Meeee...please !!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A)Vì OT là phân giác của góc xoy => O1=O2
-Xét tam giác OAM và tam giác OBM:
O1=O2
OM chung
=> tam giác OAM = tam giác OBM(c.huyền và góc nhọn)
B) vì MA=MB (đ.án câu a)
=>AMB là tam giác cân tại M
C) ko biết :))
a: Xét ΔOAC và ΔOBC có
OA=OB
góc AOC=góc BOC
OC chung
=>ΔOAC=ΔOBC
b: ΔOAC=ΔOBC
=>góc OBC=90 độ
=>CB vuông góc Oy
c: OA=OB
CA=CB
=>OC là trung trực của AB
bạn tự vẽ hình nha
a)xét tam giác AOC và tam giác BOC
có +OB=OA(gt)
+\(O_1=O_2\) (Ot là tia phân giác của góc xOy)
+OC: cạnh chung
vậy tam giác AOC= tam giác BOC
b) vì tam giác AOC=tam giácBOC(CMT)
=>AC=CB(2 góc tương ứng)
do đó CO là tiaa phân giác của góc ACB
Hình: chắc bác cũng tự vẽ đc =.=
Xét \(\Delta OAC\)và \(\Delta OAB\)có:
\(\widehat{C}=\widehat{B}=90^o\)
\(\widehat{AOC}=\widehat{AOB}\)(gt) \(\Rightarrow\Delta OAC=\Delta OAB\)
OA chung (CH-GN)
=> OB= OC ( 2 cạnh tương ứng) (1)
Từ (1), ta có: \(\Delta BOC\)cân tại O