K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2015

a) xet tam giac OAH  va tam giac OBH : OH=OH ( canh chung ), OA=OB (gt), goc HOA= goc HOB( Ot la tia p/g goc xOy)-> tam giac = nhau (c-g-c)

b) cm tam giac OHB= tam giac AHC (c=g=c) ; OH=HC , BH=AH (tam giac OAH=tam giac OBH), goc OHB= goc CHA( 2 goc doi dinh)

c) C1 : cm tam giac OAB can tai O co OH la phan giac -> OH la duong cao -> OH vuong goc AB hay OC vuong  goc AB

C2 : ta co : goc OHB+ goc OHA=180 ( 2 goc ke bu)

                goc OHB= goc OHA( tam giac OHA= tam giac OHB )

--> goc OHB+goc OHB=180

-> 2 gpc OHB=180

->goc OHB=180:2=90

-> OH vuong goc AH tai H hay OC vuong goc AB

a: Xét ΔOAC và ΔOBC có

OA=OB

góc AOC=góc BOC

OC chung

=>ΔOAC=ΔOBC

b: ΔOAC=ΔOBC

=>góc OBC=90 độ

=>CB vuông góc Oy

c: OA=OB

CA=CB

=>OC là trung trực của AB

 

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OAa) Chứng minh: Tam giác OAH = tam giác OBHb) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBNc) Chứng minh AB vuông góc với OHd) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C...
Đọc tiếp

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OA

a) Chứng minh: Tam giác OAH = tam giác OBH

b) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBN

c) Chứng minh AB vuông góc với OH

d) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot

2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C sao cho AB - AC. Kẻ BH vuông góc AC (H thuộc AC) và CK vuông góc AB (K thuộc AB)

a) Chứng minh góc ABH = góc ACK

b) BH cắt CK tại E. Chứng minh AE vuông góc BC

c) Tam giác ABC phải thoả mãn điều kiện gì để E là điểm cách đều 3 cạnh ?

3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA

a) Chứng minh: Tam giác AMB = tam giác DMC

b) Chứng minh: AC = BD và AC //BD

c) Chứng minh: Tam giác ABC = tam giác DCB. Tính số đo góc BDC

4. Cho tam giác ABC vuông tại A có góc ABC = 60 độ

a) Tính số đo góc ACB

b) Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Chứng minh tam giác ABD = tam giác ABC

c) Vẽ tia Bx là tia phân giác của góc ABC. Qua C vẽ đường thẳng vuông góc với AC, cắt tia Bx tại E. Chứng minh AC = 1/2 BE

2
1 tháng 8 2016

Võ Hùng Nam hảo hảo a~

Bài 3: 

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

Suy ra:AC//BD và AC=BD

c: Xét ΔABC và ΔDCB có 

AB=DC

\(\widehat{ABC}=\widehat{DCB}\)

BC chung

Do đó: ΔABC=ΔDCB

Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)

15 tháng 11 2016

Ta có hình vẽ:

x O y t A B H C D K' K a) Vì Ot là phân giác của góc xOy nên \(xOt=yOt=\frac{xOy}{2}\)

Xét Δ AHO và Δ BHO có:

AOH = BOH (cmt)

OH là cạnh chung

AHO = BHO = 90o

Do đó, Δ AHO = Δ BHO (g.c.g) (đpcm)

b) Δ AHO = Δ BHO (câu a)

=> OA = OB (2 cạnh tương ứng)

Gọi K' là giao điểm của AD và BC

Xét Δ AOK' và Δ BOK' có:

OA = OB (cmt)

AOK' = BOK' ( câu a)

OK' là cạnh chung

Do đó, Δ AOK' = Δ BOK' (c.g.c)

=> AK' = BK' (2 cạnh tương ứng); OAK' = OBK' (2 góc tương ứng)

Lại có: OAK' + K'AC = 180o (kề bù) (1)

OBK' + K'BD = 180o (kề bù) (2)

Từ (1) và (2) => K'AC = K'BD

Xét Δ K'AC và Δ K'BD có:

AC = BD (gt)

K'AC = K'BD (cmt)

AK' = BK' (cmt)

Do đó, Δ K'AC = Δ K'BD (c.g.c)

=> K'C = K'D (2 cạnh tương ứng)

Mà AK' = BK' (cmt) => AK' + K'D = BK' + K'C

=> AD = BC (đpcm)

c) Đầu tiên ta đi chứng minh 3 điểm O, H, K' thẳng hàng (bn tự chứng minh)

Δ AOK' = BOK' (câu b)

=> AK'O = BK'O (2 góc tương ứng) (*)

Δ K'AC = Δ K'BD (câu b)

=> AK'C = BK'D (2 góc tương ứng) (**)

Ta có: AK'O + AK'C + CK'K = 180o

BK'O + BK'D + DK'K = 180o

Kết hợp với (*) và (**) => CK'K = DK'K

Δ OK'C và Δ OK'D có:

OK' là cạnh chung

COK' = DOK' (câu a)

OC = OD (vì OA = OB; AC = BD)

Do đó, Δ OK'C = Δ OK'D (c.g.c)

=> K'C = K'D (2 cạnh tương ứng)

Xét Δ CK'K và Δ DK'K có:

CK' = DK' (cmt)

CK'K = DK'K (cmt)

K'K là cạnh chung

Do đó, Δ CK'K = Δ DK'K (c.g.c)

=> CKK' = DKK' (2 góc tương ứng)

Mà CKK' + DKK' = 180o (kề bù) nên CKK' = DKK' = 90o

=> \(KK'\perp CD\)

\(KK'\perp AB\) do \(Ot\perp AB\) nên AB // CD (đpcm)

15 tháng 11 2016

Thanks, mik làm được rồi.....

16 tháng 5 2016

bạn tự vẽ hình nha

a)xét tam giác AOC và tam giác BOC

có +OB=OA(gt)

     +\(O_1=O_2\) (Ot là tia phân giác của góc xOy)

     +OC: cạnh chung

vậy tam giác AOC= tam giác BOC

b) vì tam giác AOC=tam giácBOC(CMT)

=>AC=CB(2 góc tương ứng)

do đó CO là tiaa phân giác của góc ACB