Tìm STN n để phân số
A=\(\frac{13n-27}{3n-5}\)có giá trị lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A là phân số thì 3n + 7 ko chia hết cho n + 1
<=> n + 1 khác Ư(4) = {-1;-2;-4;1;2;4}
=> n khác {-2;-3;-5;0;1;3}
Để A là số nguyên thì 3n + 7 chia hết cho n + 1
=> 3n + 3 + 4 chia hết cho n + 1
=> 3.(n + 1) + 4 chia hết cho n + 1
=> 4 chia hết cho n + 1
=> n + 1 thuộc Ư(4) = {-4;-2;-1;1;2;4}
=> n = {-5;-3;-2;0;1;3}
\(A=\frac{3n+8}{n-3}=\frac{3n-9+17}{n-3}-\frac{3\left(n-3\right)+17}{n-3}=3+\frac{17}{n-3}\)
Để \(A=3+\frac{17}{n-3}\) đạt GTLN <=> \(\frac{17}{n-3}\)đạt GTLN
=> \(n-3\) là số nguyên dương nhỏ nhất
=> \(n-3=1\Rightarrow n=4\)
\(\Rightarrow A_{max}=\frac{3.4+8}{4-3}=20\) tại \(n=4\)
Để \(A\)lớn nhất \(\Leftrightarrow3n+8\)lớn nhất (sao cho \(3n+8>0\))
\(\Leftrightarrow n-3\)nhỏ nhất (sao cho \(n-3>0\))
Mà \(n\in Z\Rightarrow n-3\in Z\)
\(\Rightarrow n-3\)nhỏ nhất \(\Leftrightarrow n-3=1\Rightarrow n=4\)(thỏa mãn)
\(\Rightarrow3n+8=3\cdot4+8=20\)
Vậy \(A\)lớn nhất khi \(A=20\)tại \(n=4\)
Chúc các bạn học tốt nhớ k đúng cho mình nhé!!!!!!!
A=(13n-27)/ (3n-5)=13/ 3-1/ (3n-5)
Để A lớn nhất thì 1/ (3n-5) nhỏ nhất
Do đó 3n-5 phải có giá trị lớn nhất . Đk 3n-5 <0
Nên 3n-5=-1
=> n=4/3
Không biết đúng không nữa :((