Cho tam giác ABC có góc B=2C <90
.Vẽ AH vuông BC tại H.Trên tia AB lấy D sao cho AD=HC.c/m đg thẳng DH đi qua trung điểm của đoạn AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Trong tam giác ABC có góc A + góc B + góc C = 180 độ
\(\Rightarrow\) góc B + góc C = 180 độ - 100 độ = 80 độ
Góc B = (80 + 50) : 2 = 65 (độ)
Góc C = 80 - 65 = 15 (độ)
b) Trong tam giác ABC có góc A + góc B + góc C = 180 độ
\(\Rightarrow\) góc B + góc C = 180 độ - 75 độ = 105 (độ)
Cách 1
Góc B = 105 : (1 + 2) . 2 = 70 (độ)
Góc C = 105 - 70 = 35 (độ)
Cách 2
Gọi số đo góc B, góc C lần lượt là x,y
\(x=2y\Rightarrow\frac{x}{2}=\frac{y}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{2}=\frac{y}{1}=\frac{x+y}{2+1}=\frac{105}{3}=35\)
\(\Rightarrow\) x = 35.2 = 70; y = 35.1 = 35
Vậy số đo góc B, góc C lần lượt là 70 độ; 35 độ
Bài này chắc không cần vẽ hình đâu
+)ΔABC vuông tại A \(\Rightarrow\widehat{A}=90^o\)
+)Áp dụng định lý tổng ba góc trong tam giác vào tam giác ABC, ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(=>90^o+40^o+\widehat{C}=180^o\)
\(=>\widehat{C}=180^o-90^o-40^o=50^o\)
Vậy \(\widehat{C}=50^o\)
------------------------------------------
+)Tam giác ABC vuông tại B \(\Rightarrow\widehat{B}=90^o\)
+)\(\widehat{A}=2.\widehat{C}\Rightarrow\widehat{A}+\widehat{C}=2.\widehat{C}+\widehat{C}=3.\widehat{C}\)
+)Áp dụng định lý tổng ba góc trong tam giác vào tam giác ABC, ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{A}+90^o+\widehat{C}=180^o\)
\(=>\widehat{A}+\widehat{C}=180^o-90^o\)
\(=>3.\widehat{C}=90^o\)
\(=>\widehat{C}=\dfrac{90^o}{3}=30^o\)
+)\(\widehat{A}=2.\widehat{C}\Rightarrow\widehat{A}=2.30^o=60^o\)
Vậy: \(\widehat{A}=60^o\) ; \(\widehat{C}=30^o\)
1: góc C=90-40=50 độ
2: góc A=2/3*90=60 độ
góc C=90-60=30 độ
Kẻ BD là phân giác của góc ABC và Lấy M trên BC sao cho BM=BA
=>BM=1/2BC
Xét ΔBDC có góc DBC=góc DCB
nên ΔBDC cân tại D
mà DM là trung tuyến
nên DM là đường cao
Xét ΔBAD và ΔBMC có
BA=BM
góc ABD=góc MBD
BD chung
Do đó: ΔBAD=ΔBMD
=>góc BMD=góc BAD=90 độ
=>ΔABC vuông tại A
=>góc B+góc C=90 độ
=>góc B=60 độ, góc C=30 độ
Ta có :
\(\hept{\begin{cases}A=2B\\2C=3B\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{A}{2}=\frac{B}{1}\\\frac{C}{3}=\frac{B}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{A}{4}=\frac{B}{2}\\\frac{C}{3}=\frac{B}{2}\end{cases}\Leftrightarrow}\frac{A}{4}=\frac{B}{2}=\frac{C}{3}}\)
Áp dụng TC của dãy tỉ số bằng nhau , ta có :
\(\frac{A}{4}=\frac{B}{2}=\frac{C}{3}=\frac{A+B+C}{4+2+3}=\frac{180}{9}=20\)
\(\Rightarrow\hept{\begin{cases}A=20.4=80^o\\B=20.2=40^o\\C=20.3=60^o\end{cases}}\)
Sửa có ba tia phân giác gó B thành có tia phân giac góc B
Kéo dài AB một đoạn thẳng BD = BC = x
dễ thấy \(\Delta ABC~\Delta ACD\left(g.g\right)\)
\(\Rightarrow\frac{AB}{AC}=\frac{AC}{AD}\Rightarrow\frac{5}{8}=\frac{8}{5+x}\Rightarrow x=7,8\)