K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2023

TH1: Lấy \(x_1;x_2\in R\) sao cho \(0< x_1< x_2\)

\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{a\cdot\left(x_1^2-x_2^2\right)}{x_1-x_2}=a\cdot\left(x_1+x_2\right)\)>0 vì \(x_1+x_2>0;a>0\)

=>Hàm số y=f(x)=ax2 đồng biến khi x>0 nếu a>0

TH2: Lấy \(x_1;x_2\in R^+;0< x_1< x_2\)

\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{a\cdot\left(x_1^2-x_2^2\right)}{x_1-x_2}=\dfrac{a\left(x_1-x_2\right)\left(x_1+x_2\right)}{x_1-x_2}\)

\(=a\left(x_1+x_2\right)< 0\)(vì x1+x2>0 và a<0)

=>Hàm số nghịch biến khi x>0

TH3: Lấy \(x_1;x_2\in R^-\) sao cho \(x_1< x_2< 0\)

\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{a\left(x_1^2-x_2^2\right)}{x_1-x_2}=\dfrac{a\left(x_1+x_2\right)\left(x_1-x_2\right)}{x_1-x_2}\)

\(=a\left(x_1+x_2\right)>0\) vì a<0 và x1+x2<0

=>Hàm số đồng biến khi x<0

 

B={2;-2}

mx-3=mx-3

=>0mx=0

=>\(x\in R\)

=>A=R

B\A=B khi B giao A bằng rỗng

=>m<>2 và m<>-2

6 tháng 11 2019

a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)

b) \(x-x^2-3=-\left(x^2-x+3\right)\)

\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)

\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)

24 tháng 8

x²-2x+2=(x²-2x+1)+1=( x-1)²+1

Mà (x-1)²≥0 với mọi x

=> (x-1)²+1>0 với mọi x

=> x²-2x+2>0 với mọi x

30 tháng 5 2023

loading...

loading...

30 tháng 5 2023

loading...  

26 tháng 7 2016

a)\(x^2+2xy+1+y^2=\left(x+y\right)^2+1\)

Vì \(\left(x+y\right)^2\ge0\)với mọi \(x,y\in\)

nên \(\left(x+y\right)^2+1>0\)với mọi \(x,y\in R\)

Vậy biểu thức \(x^2+2xy+y^2+1>0\left(x;y\in R\right)\)

b) \(-x^2+x-1=-\left(x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\left(x\in R\right)\)

nên \(-\left(x-\frac{1}{2}\right)^2\le0\left(x\in R\right)\)

do đó \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\left(x\in R\right)\)

Vậy biểu thức \(x-x^2-1< 0\left(x\in R\right)\)

14 tháng 9 2018

a) x2 + 2xy + 1 +y2 = (x2+2xy+y2)+1=(x+y)2+1 mà (x+y)2 luôn lớn hơn hoặc bằng 0 với mọi x,y

=>x2+2xy+1+y2>1>0

b)x-x2-1=-(x2-x+1)=-((x2-2.x.0,5+0,25)+0,75)=-((x-0,5)2+0,75) mà (x-0,5)2 luôn lớn hơn hoặc bằng 0 vớ mọi x

=>x-x2-1<0

TƯỞNG KHÔNG DỄ NHƯNG DỄ KHÔNG TƯỞNG!

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Lần sau bạn lưu ý gõ đề bằng công thức toán để được hỗ trợ tốt hơn.

Lời giải:

$x+\sqrt{x}+1>1$ với mọi $x>0, x\neq 1$

$\Rightarrow T=\frac{2}{x+\sqrt{x}+1}< 2$

$x+\sqrt{x}+1>0$ với mọi $x>0, x\neq 1$

$\Rightarrow T>0$

Vậy $0< T< 2$

$T$ nguyên $\Leftrightarrow T=1$

$\Leftrightarrow \frac{2}{x+\sqrt{x}+1}=1$

$\Leftrightarrow x+\sqrt{x}+1=2$

$\Leftrightarrow x+\sqrt{x}-1=0$

$\Rightarrow x=\frac{-1+\sqrt{5}}{2}$

$\Rightarrow x=\frac{3-\sqrt{5}}{2}$ (tm)

10 tháng 10 2023

\(A=\left\{x\in R|-2\le x\le2\right\}\)

\(B=\left\{x\in R|x\ge3\right\}\)

\(C=\left(-\infty;0\right)\)

\(A\cup B=\left[-2;2\right]\cup[3;+\infty)\)

\(A\)\\(C=\left[0;2\right]\)

\(A\cap B=\varnothing\)

\(B\cap C=\varnothing\)

13 tháng 8 2018

\(x^2-2xy+y^2+1=\left(x^2-2xy+y^2\right)+1=\left(x-y\right)^2+1>0\) nhé!

\(x-x^2-1=-\left(x^2-x+1\right)=-\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}< 0\)

13 tháng 8 2018

câu a chứng minh =0 cơ

10 tháng 3 2023

\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)

\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)

\(\Leftrightarrow-7m^2+38m-15< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)

\(KL:m\in\left(5;+\infty\right)\)