tính tổng của
\(\frac{5}{3\cdot6}+\frac{5}{6\cdot9}+...+\frac{5}{96\cdot99}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(\frac{3\cdot4\cdot7}{12\cdot8\cdot9}\)= \(\frac{3\cdot4\cdot7}{3\cdot4\cdot8\cdot9}\)= \(\frac{7}{72}\)
b. \(\frac{4\cdot5\cdot6}{12\cdot10\cdot8}\)= \(\frac{4\cdot5\cdot2\cdot3}{3\cdot4\cdot5\cdot2\cdot8}\)= \(\frac{1}{8}\)
c.\(\frac{5\cdot6\cdot7}{12\cdot14\cdot15}\)= \(\frac{5\cdot6\cdot7}{2\cdot6\cdot2\cdot7\cdot3\cdot5}\)= \(\frac{1}{12}\)
a, \(\frac{3.4.7}{12.8.9}\)= \(\frac{3.4.7}{3.4.8.9}\)= \(\frac{7}{72}\)
b, \(\frac{4.5.6}{12.10.8}\)= \(\frac{4.5.6}{3.4.2.5.8}\)= \(\frac{1}{8}\)
c, \(\frac{5.6.7}{12.14.15}\)= \(\frac{5.6.7}{2.6.2.7.3.5}\)= \(\frac{1}{12}\)
H=\(\frac{1\cdot2\cdot3+2\cdot4\cdot6+3\cdot6\cdot9+5\cdot10\cdot15}{1\cdot3\cdot6+2\cdot6\cdot12+3\cdot9\cdot18+5\cdot15\cdot30}=\frac{1.2.3+2^3.\left(1.2.3\right)+3^3.\left(1.2.3\right)+5^3.\left(1.2.3\right)}{1.3.6+2^3.\left(1.3.6\right)+3^3.\left(1.3.6\right)+5^3.\left(1.3.6\right)}=\frac{1.2.3.\left(1+2^3+3^3+5^3\right)}{1.3.6.\left(1+2^3+3^3+5^3\right)}=\frac{2}{6}=\frac{1}{3}\)
Ta có : \(\frac{5}{3.6}+\frac{5}{6.9}+..+\frac{5}{96.99}\)
= \(\frac{5}{3}.\left(\frac{3}{3.6}+\frac{3}{6.9}+...+\frac{3}{96.99}\right)=\frac{5}{3}.\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{96}-\frac{1}{99}\right)=\frac{5}{3}.\left(\frac{1}{3}-\frac{1}{99}\right)\)
= \(\frac{5}{3}.\frac{32}{99}=\frac{160}{297}\)