Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{50\cdot51}+\frac{1}{51\cdot52}+\frac{1}{52\cdot53}+...+\frac{1}{99\cdot100}\)tính kết quả
Đặt A = \(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+.....+\frac{3}{99.100}\)
\(\frac{1}{3}A\)\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{3}A\)\(=1-\frac{1}{100}\)
=> \(\frac{1}{3}A=\frac{99}{100}\)
=> A = \(\frac{99}{100}.3=\frac{297}{100}\)
\(\frac{3}{1.2}+\frac{3}{2.3}+..................+\frac{3}{99.100}\)
\(=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+..................+\frac{1}{99.100}\right)\)
\(=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.................+\frac{1}{99}-\frac{1}{100}\right)\)
\(=3.\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}\)
\(=\frac{297}{100}\)
Đặt \(D=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\)
=>\(2D=\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{98.100}\)
=>\(2D=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\)
=>\(2D=\frac{1}{2}-\frac{1}{100}\)
=>\(2D=\frac{49}{100}\)
=>\(D=\frac{49}{50}\)
a) \(C=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
\(=7\left(\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\right)\)
\(=7\left(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\right)\)
\(=7\left(\frac{1}{2}-\frac{1}{28}\right)\)
\(=7.\frac{13}{28}=\frac{7.13}{28}=\frac{13}{4}\)
b) \(B=\frac{6}{3.5}+\frac{6}{5.7}+\frac{6}{7.9}+...+\frac{6}{97.99}\)
\(=3\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\right)\)
\(=3\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=3\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=3.\frac{32}{99}=\frac{3.32}{99}=\frac{32}{33}\)
Giải:
\(\dfrac{5}{1.2}+\dfrac{5}{2.3}+\dfrac{5}{3.4}+...+\dfrac{5}{98.99}+\dfrac{5}{99.100}\)
\(=5.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(=5.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=5.\left(1-\dfrac{1}{100}\right)\)
\(=5.\dfrac{99}{100}\)
\(=\dfrac{99}{20}\)
Chúc em học tốt!
Giải:
51.2+52.3+53.4+...+598.99+599.10051.2+52.3+53.4+...+598.99+599.100
=5.(11.2+12.3+13.4+...+198.99+199.100)=5.(11.2+12.3+13.4+...+198.99+199.100)
=5.(1−12+12−13+13−14+...+198−199+199−1100)=5.(1−12+12−13+13−14+...+198−199+199−1100)
=5.(1−1100)=5.(1−1100)
=5.99100=5.99100
=9920=9920
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}\)
\(=1-\frac{1}{6}\)
\(=\frac{5}{6}\)
♥ ☼ ↕ ✿ ⊰ ⊱ ✪ ✣ ✤ ✥ ✦ ✧ ✩ ✫ ✬ ✭ ✯ ✰ ✱ ✲ ✳ ❃ ❂ ❁ ❀ ✿ ✶ ✴ ❄ ❉ ❋ ❖ ⊹⊱✿ ✿⊰⊹ ♧ ✿
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}=\)
\(\frac{1}{1}-\frac{1}{6}=\frac{5}{6}\)