K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2021

\(M=2021+\left(x-2022\right)^{2022}\ge2021\forall x\)

Dấu '=' xảy ra khi x=2022

17 tháng 10 2021

bạn có thể lý giải chi tiết từng bước đc ko?

25 tháng 7 2023

BẰNG NHAU

 

25 tháng 7 2023

A) <

B) >

👇

26 tháng 6 2021

2021 số tự nhiên liên tiếp đầu tiên gồm: 0,1, 2, 3, 4,...., 2020

Dãy số này có 2021 số hạng

Số hạng ở giữa là (2020 + 0) : 2 = 1010

Vì 2021 số này là 2021 số tự nhiên liên tiếp cách đều nên ta có 0 + 2020 = 1 + 2019 = 2 + 2018 =...

Trừ số 1010 thì dãy số này có số cặp số là: 2020 : 2 = 1010

Tổng của mỗi cặp số là 2020

=> Tổng của 2021 số tự nhiên liên tiếp đầu tiên là: 2020 x 1010 + 1010 = 2.041.210

26 tháng 6 2021

0+1+2+3+4+.......+2020+2021
số lượng số hạng của dãy số đã cho là:
2021-0+1=2022
tổng của dãy số:
(0+2021).2022:2 = 2 043 231

hok tốt:))

22 tháng 9 2021

\(a,TH1:x-2021=0=>x=2021\)

\(Th2:x-2022=0=>x=2022\)

Vậy \(x\in\left\{2021;2022\right\}\)

\(b,x\left(8-5\right)=1080\)

\(x.3=1080\)

\(x=360\)

\(c,x^3=216< =>6^3=216=>x=3\)

\(d,5^5=3125\)

a)  ( x- 2021) * ( x- 2022) = 0

=>  \(\orbr{\begin{cases}x-2021=0\\x-2022=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2021\\x=2022\end{cases}}}\)

b)  b. 8x - 5x = 2022

=>  3x  =  2022

=>  x  =   674

c)  \(5\cdot x^3=1080\)

=>  \(x^3=216\)

=>  \(x^3=6^3\)

=>   x  =  6

d)   \(5^x=3125\)

=>    \(5^x=5^5\)

=>  x    =  5

18 tháng 4 2023

A = \(\dfrac{2^{2021}+1}{2^{2021}}\) =  \(\dfrac{2^{2021}}{2^{2021}}\)  + \(\dfrac{1}{2^{2021}}\) = 1 + \(\dfrac{1}{2^{2021}}\)

B = \(\dfrac{2^{2021}+2}{2^{2021}+1}\) = \(\dfrac{2^{2021}+1+1}{2^{2021}+1}\) = \(\dfrac{2^{2021}+1}{2^{2021}+1}\) +\(\dfrac{1}{2^{2021}+1}\) = 1 + \(\dfrac{1}{2^{2021}+1}\)

Vì \(\dfrac{1}{2^{2021}}\) > \(\dfrac{1}{2^{2021}+1}\) nên 1 + \(\dfrac{1}{2^{2021}}\) > 1 + \(\dfrac{1}{2^{2021}+1}\)

Vậy A > B 

7 tháng 12 2021

\(Sửa:A=x^4-6x^3+13x^2-12x+2021\\ A=\left(x^4-6x^3+9x^2\right)+4\left(x^2-3x\right)+4+2017\\ A=\left(x^2-3x\right)^2+4\left(x^2-3x\right)+4+2017\\ A=\left(x^2-3x+2\right)^2+2017\ge2017\\ A_{min}=2017\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)