K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2021

A

11 tháng 11 2021

AH
Akai Haruma
Giáo viên
6 tháng 1 2023

Lời giải:

Sử dụng BĐT sau:

Cho $a,b$ thực. Khi đó $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$. Áp dụng vào bài toán:

$|x-2018|+|x-2022|=|x-2018|+|2022-x|\geq |x-2018+2022-x|=4$

$|x-2020|\geq 0$ (theo tính chất trị tuyệt đối)

$\Rightarrow A\geq 4+0=4$

Vậy GTNN của $A$ là $4$. Giá trị này đạt được khi $(x-2018)(2022-x)\geq 0$ và $x-2020=0$

Hay khi $x=2020$

27 tháng 1 2023

vì sao dấu "=" xảy ra khi ab ≥0 thế ạ ?

 

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|x-2020|+|x-2024|=|x-2020|+|2024-x|\geq |x-2020+2024-x|=4$

$|x-2022|\geq 0$ (theo tính chất trị tuyệt đối)

$\Rightarrow |x-2020|+|x-2024|+|x-2022|\geq 4+0=4$

$\Rightarrow P\geq 4$

Vậy $P_{\min}=4$. Giá trị này đạt được khi $(x-2020)(2024-x)\geq 0$ và $x-2022=0$

Hay $x=2022$

6 tháng 3 2022

Ko tính đc bạn

6 tháng 3 2022

bn biết cách lm ko

5 tháng 1 2023

\(\dfrac{x+1}{2023}+\dfrac{x+2}{2022}=\dfrac{x+3}{2021}+\dfrac{x+4}{2020}\\ \Leftrightarrow\dfrac{x+1}{2023}+1+\dfrac{x+2}{2022}+1=\dfrac{x+3}{2021}+1+\dfrac{x+4}{2020}+1\\ \Leftrightarrow\dfrac{x+1+2023}{2023}+\dfrac{x+2+2022}{2022}-\dfrac{x+3+2021}{2021}-\dfrac{x+4+2020}{2020}=0\\ \Leftrightarrow\left(x+2024\right)\times\left(\dfrac{1}{2023}+\dfrac{1}{2022}-\dfrac{1}{2021}-\dfrac{1}{2020}\right)=0\\ \Rightarrow x+2024=0:\left(\dfrac{1}{2023}+\dfrac{1}{2022}-\dfrac{1}{2021}-\dfrac{1}{2020}\right)\\ \Rightarrow x+2024=0\\ \Rightarrow x=-2024\)

5 tháng 1 2023

Tham khảo câu trả lời:

27 tháng 10 2021

Sửa: \(Đk:x\ge0\)

\(C=1-\dfrac{1}{\sqrt{x}+2022}\ge1-\dfrac{1}{0+2022}=\dfrac{2021}{2022}\\ C_{min}=\dfrac{2021}{2022}\Leftrightarrow x=0\)

27 tháng 10 2021

\(C=\dfrac{\sqrt{x}+2022}{\sqrt{x}+2022}-\dfrac{1}{\sqrt{x}+2022}=1-\dfrac{1}{\sqrt{x}+2022}\)

Do \(\sqrt{x}+2022\ge2022\Leftrightarrow\dfrac{1}{\sqrt{x}+2022}\le\dfrac{1}{2022}\Leftrightarrow-\dfrac{1}{\sqrt{x}+2022}\ge-\dfrac{1}{2022}\)

\(\Leftrightarrow C=1-\dfrac{1}{\sqrt{x}+2022}\ge1-\dfrac{1}{2022}=\dfrac{2011}{2022}\)

Dấu"=" xảy ra \(\Leftrightarrow x=0\)