1+2-3-4+5+6-7-7+...+2018-2019-2020+2021
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
$5+3(-7)+4:(-2)=5+(-21)+(-2)=5-(21+2)=5-23=-(23-5)=-18$
b.
$1-2-3+4+5-6-7+8+....+2017-2018-2019+2020+2021$
$=(1-2-3+4)+(5-6-7+8)+....+(2017-2018-2019+2020)+2021$
$=0+0+....+0+2021=2021$
Sửa đề: 1-2-3+4+5-6-7+8+...-2018-2019+2020+2021-2022-2023
=(1-2-3+4)+(5-6-7+8)+...+(2017-2018-2019+2020)+(2021-2022-2023)
=0+0+...+0+(-1-2023)
=-2024
=(1+2-3-4)+(5+6-7-8)+...+(2017+2018-2019-2020)+2021
=(-4)+(-4)+...+(-4)+2021
=-4*505+2021
=1
\(B=1+2-3-4+5+6-7-8+9+10-...+2018-2019-2020+2021\)
\(B=\left(1+2-3-4\right)+...+\left(2017+2018-2019-2020\right)+2021\) \(B=\left(-4\right)+...+\left(-4\right)+2021+2020:4=505\)
\(B=\left(-4\right).505+2021\) \(B=\left(-2020\right)+2021\)
\(B=1\)
S=1+(2-3)+(-4+5)+(6-7)+(-8+9)+...+(-2020+2021)
S=1-1+1-1+1+...+1
S=1+0+0+...+0
S=1
\(S=1+2-3-4+...+2017+2018-2019-2020+2021\\ S=\left(1+2-3-4\right)+...+\left(2017+2018-2019-2020\right)+2021\\ S=\left(-4\right)+\left(-4\right)+\left(-4\right)+...+-4+2021\\ S=505.\left(-4\right)+2021\\ S=-2020+2021\\ S=1\)
Ta có: \(S=1+2-3-4+5+6-...+2018-2019-2020+2021\)
\(=\left(-4\right)\cdot505+2021\)
=2021-2020
=1
\(S=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(2017+2018-2019-2020\right)+2021\\ S=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+2021\)
Ta có từ 1 đến 2020 có 2020 số nên khi nhóm 4 số 1 cặp thì có \(2020:5=404\left(cặp\right)\)
Vậy \(S=404\left(-4\right)+2021=-1616+2021=405\)
S=1+2-3-4+5+6-7-8+9+10-...+2018-2019-2020+2021
=1+(2-3-4+5)+(6-7-8+9)+...+(2018-2019-2020+2021)
=1+0+0+...+0
=1
Vậy S=1
S=1+2−3−4+5+6−7−8+9+10−...+2018−2019−2020+2021
S=0+1-1+1-1+...-1-+1=0S=0+1−1+1−1+...−1−+1=0
\(S=1+2-3-4+5+6-7-8+9+10-...+2018-2019-2020+2021\)
\(S=0+1-1+1-1+...-1-+1=0\)
Sửa đề :
1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 - ... + 2018 - 2019 - 2020 + 2021
= 1 + ( 2 - 3 - 4 + 5 ) + ( 6 - 7 - 8 + 9 ) + ... + ( 2018 - 2019 - 2020 + 2021 )
= 1 + 0 + 0 + ... + 0
= 1
hơ hơ.sao chép