K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2023

a

a = 1, b = -3, c = 2

\(\Delta=b^2-4ac=\left(-3\right)^2-4.1.2=9-8=1\)

Nhẩm nghiệm:

a + b + c = 0 (1 - 3 + 2 = 0)

\(\Rightarrow x_1=1;x_2=\dfrac{c}{a}=\dfrac{2}{1}=2\)

b

a = -2, b = 1, c = 1

\(\Delta=1^2-4.\left(-2\right).1=1+8=9\)

Nhẩm nghiệm:

a + b + c = 0 (-2 + 1 + 1 = 0)

\(\Rightarrow x_1=1;x_2=\dfrac{c}{a}=\dfrac{1}{-2}=-\dfrac{1}{2}\)

c

a = 1, b = -4, c = 4

\(\Delta=\left(-4\right)^2-4.4=16-16=0\)

=> Phương trình có nghiệm kép.

\(x_1=x_2=-\dfrac{b}{2a}=\dfrac{-4}{2.1}=-2\)

d

a = 1, b = -1, c = 4

\(\Delta=\left(-1\right)^2-4.4=1-16=-15< 0\)

=> Phương trình vô nghiệm.

29 tháng 6 2023

a) x² - 3x + 2 = 0

a = 1; b = -3; c = 2

∆ = b² - 4ac = (-3)² - 4.1.2 = 9 - 8 = 1 > 0

Phương trình có hai nghiệm phân biệt:

x₁ = (-b + √∆)/2a = [-(-3) + 1]/2 = 2

x₂ = (-b - √∆)/2a = [-(-3) - 1]/2 = 1

Vậy S = {1; 2}

b) -2x² + x + 1 = 0

a = -2; b = 1; c = 1

∆ = b² - 4ac = 1² - 4.(-2).1 = 9 > 0

Phương trình có hai nghiệm phân biệt

x₁ = (-b + √∆)/2a = (-1 + 3)/[2.(-2)] = -1/2

x₂ = (-b - √∆)/2a = (-1 - 3)/[2.(-2)] = 1

Vậy S = {-1/2; 1}

c) x² - 4x + 4 = 0

a = 1; b = -4; c = 4

∆ = b² - 4ac = (-4)² - 4.1.4 = 0

Phương trình có nghiệm kép:

x₁ = x₂ = -b/2a = -(-4)/(2.1) = 2

Vậy S = {2}

d) x² - x + 4 = 0

a = 1; b = -1; c = 4

∆ = b² - 4ac = (-1)² - 4.1.4 = -15 < 0

Phương trình vô nghiệm

5 tháng 4 2023

a,P(\(x\)) =  \(x^3\) - 2\(x\) + 6 + 3\(x\)4 - \(x\) + 2\(x\)3 - 2\(x\)2

   P(\(x\)) = (\(x^3\) + 2\(x^3\)) - ( 2\(x\) + \(x\) ) + 6 + 3\(x^4\) - 2\(x^2\)

   P(\(x\))  = 3\(x^3\) - 3\(x\) + 6 + 3\(x^4\)- 2\(x^2\)

   P(\(x\) )= 3\(x^4\) + 3\(x^3\) - 2\(x^2\) - 3\(x\) + 6

    Q(\(x\)) = \(x^3\) -  7 + 2\(x^2\) + 3\(x\) - 9\(x^2\) - 2 - 4\(x^3\)

   Q(\(x\)) =  (\(x^3\) - 4\(x^3\)) - ( 7 + 2) - (9\(x^2\) - 2\(x^2\)) + 3\(x\)

   Q(\(x\)) = -3\(x^3\) - 9 - 7\(x^2\) + 3\(x\)

  Q(\(x\)) = -3\(x^3\) - 7\(x^2\) + 3\(x\) - 9

Bậc  cao nhất của P(\(x\)) là 4; hệ số cao nhất là: 3; hệ số tự do là 6

Bậc cao nhất của Q(\(x\)) là 3; hệ số cao nhất là -3; hệ số tự do là -9

 

 

10 tháng 12 2021

b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)

21 tháng 10 2021

\(A=x^2-x+5=2^2-2+5=2+5=7\)

\(B=\left(x-1\right)\left(x+2\right)-x\left(x-2\right)-3x\)

\(=x^2+x-2-x^2+2x-3x\)

\(=-2\)

`@` `\text {Ans}`

`\downarrow`

`a)`

`P(x) =`\(3x^2+7+2x^4-3x^2-4-5x+2x^3\)

`= (3x^2 - 3x^2) + 2x^4 + 2x^3 - 5x + (7-4)`

`= 2x^4 + 2x^3 - 5x + 3`

`Q(x) =`\(3x^3+2x^2-x^4+x+x^3+4x-2+5x^4\)

`= (5x^4 - x^4) + (3x^3 + x^3) + 2x^2 + (x + 4x)- 2`

`= 4x^4 + 4x^3 + 2x^2 + 5x - 2`

`b)`

`P(-1) = 2*(-1)^4 + 2*(-1)^3 - 5*(-1) + 3`

`= 2*1 + 2*(-1) + 5 + 3`

`= 2 - 2 + 5 + 3`

`= 8`

___

`Q(0) = 4*0^4 + 4*0^3 + 2*0^2 + 5*0 - 2`

`= 4*0 + 4*0 + 2*0 + 5*0 - 2`

`= -2`

`c)`

`G(x) = P(x) + Q(x)`

`=> G(x) = 2x^4 + 2x^3 - 5x + 3 + 4x^4 + 4x^3 + 2x^2 + 5x - 2`

`= (2x^4 + 4x^4) + (2x^3 + 4x^3) + 2x^2 + (-5x + 5x) + (3 - 2)`

`= 6x^4 + 6x^3 + 2x^2 + 1`

`d)`

`G(x) = 6x^4 + 6x^3 + 2x^2 + 1`

Vì `x^4 \ge 0 AA x`

    `x^2 \ge 0 AA x`

`=> 6x^4 + 2x^2 \ge 0 AA x`

`=> 6x^4 + 6x^3 + 2x^2 + 1 \ge 0`

`=> G(x)` luôn dương `AA` `x`

Bài cuối mình không chắc c ạ ;-;

a: A(x)=3x^3+3x-1

B(x)=-2x^3+x^2+4x-3

b: A(x)+B(x)

=3x^3+3x-1-2x^3+x^2+4x-3

=x^3+x^2+7x-4

B(x)-A(x)

=-2x^3+x^2+4x-3-3x^3-3x+1

=-5x^3+x^2+x-2

c; M(x)=x^3+x^2+7x-4

M(-3)=-27+9-21-4=-31-21+9=-43

1 tháng 1 2017

Khi x= 9 ta có  A = 9 + 2 9 − 5 = 3 + 2 3 − 5 = − 5 2