giải giúp
tam giác ABC cân tại A có góc A <90 độ. Kẻ BH vuông góc với AC(H thuộc AC) .Chứng minh BH<AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: Tam giác ABC cân tại A, góc A bằng 100 độ. BC=8cm, AC=10cm. Phía ngoài tam giác ABC vẽ tam giác ABD cân tại D, góc ADB bằng 140 độ. Tính chu vi tam giác ABD.
Kẻ AH \(\perp\) BC.
Xét tam giác ABC cân tại A có: AH là đường cao (AH \(\perp\) BC).
=> AH là trung tuyến (Tính chất các đường trong tam giác cân).
=> H là trung điểm của BC. => BH = \(\dfrac{1}{2}\) BC. => BH = \(\dfrac{1}{2}\)a.
Tam giác ABC cân tại A (gt). => ^ABC = (180o - 108o) : 2 = 36o.
Mà ^BAD = 36o (gt).
=> ^ABC = ^BAD = 36o.
Mà 2 góc này ở vị trí so le trong.
=> AD // BC (dhnb).
Mà AH \(\perp\) BC (cách vẽ).
=> AH \(\perp\) AD. => ^DAH = 90o. => ^MAH = 90o.
Kẻ MH // DB; M \(\in\) AD.
Xét tứ giác DMHB có:
+ MH // DB (cách vẽ).
+ MD // HB (do AD // BC).
=> Tứ giác DMHB là hình bình hành (dhnb).
=> MH = DB và MD = BH (Tính chất hình bình hành).
Ta có: AD = MD + AM.
Mà AD = b (do AD = AC = b); MD = \(\dfrac{1}{2}\)a (do MD = BH = \(\dfrac{1}{2}\)a).
=> AM = b - \(\dfrac{1}{2}\)a.
Xét tam giác AHB vuông tại H có:
AB2 = AH2 + BH2 (Định lý Py ta go).
Thay: b2 = AH2 + ( \(\dfrac{1}{2}\)a)2.
<=> AH2 = b2 - \(\dfrac{1}{4}\)a2.
<=> AH = \(\sqrt{b^2-\dfrac{1}{2}a^2}\).
Xét tam giác MAH vuông tại A (^MAH = 90o) có:
\(MH^2=AM^2+AH^2\) (Định lý Py ta go).
Thay: MH2 = (b - \(\dfrac{1}{2}\)a)2 + (\(\sqrt{b^2-\dfrac{1}{2}a^2}\))2.
MH2 = b2 - ab + \(\dfrac{1}{4}\)a2 + b2 - \(\dfrac{1}{4}\)a2.
MH2 = 2b2 - ab.
MH = \(\sqrt{2b^2-ab}\).
Mà MH = BD (cmt).
=> BD = \(\sqrt{2b^2-ab}\).
Chu vi tam giác ABD: BD + AD + AB = \(\sqrt{2b^2-ab}\) + b + b = \(\sqrt{2b^2-ab}\) + 2b.
Sửa đề câu b thành: CM △ABI cân
a, Vì △ABC cân tại A => ABC = ACB
Xét △ABC có tAC là góc ngoài của tam giác tại đỉnh A
Nên: tAC = ABC + ACB
=> tAC = 2 . ABC
Vì AI là tia phân giác của tAC
=> A1 = A2 = tAC : 2 = (2 . ABC) : 2 = ABC
=> A1 = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> AI // BC (dhnb)
b, Vì BI là tia phân giác của ABC
=> B1 = B2 = ABC : 2
Vì AI // BC (cmt)
=> AIB = B2 (2 góc so le trong)
Mà B1 = B2 (cmt)
=> AIB = B1
=> △ABI cân tại A
Ta kẻ đường trung tuyến AH cắt cạnh BC(BH=HC)
Ta có AH=HB( Tính chất đường trung tuyến ứng với cạnh huyền)
Suy ra: tam giác HAB cân tại H (1)
Xét tam giác ABC có: \(\widebat{A}+\widebat{B}+\widebat{C}=180_{ }\) độ
...(bạn tự tính nốt đoạn này nha)
Suy ra \(\widebat{B}=60\)(2)
Từ 1 và 2 suy ra tam giác HAB là tam giác đều
Nên AB=HA=HB(T/C tam giác đều)
Lại có HB=\(\frac{1}{2}BC\)nên AB=\(\frac{1}{2}BC\)
- Đây nè bạn ~> http://olm.vn/hoi-dap/question/130302.html
- Tick cho mềnh nha ^^~
a: Ta có: \(\widehat{BEA}=\widehat{EAC}\)(BE//AC)
mà \(\widehat{CAE}=\widehat{BAE}\)
nên \(\widehat{BEA}=\widehat{BAE}\)
hay ΔBAE cân tại B
b: \(\widehat{ABE}=180^0-2\widehat{BAE}=180^0-70^0=110^0\)
a) AD là phân giác \(\widehat{A}\) (gt).
Mà \(\widehat{BED}=\widehat{CAD}\) (BE // AC).
\(\Rightarrow\widehat{BAD}=\widehat{BED.}\)
\(\Rightarrow\) Δ BAE cân tai B.
b) Δ BAE cân tai B (cmt).
\(\Rightarrow\) \(\widehat{ABE}=180^o-2\widehat{BAE}\left(\widehat{BAE}=\widehat{BEA}\right).\)
\(\widehat{ABE}=180^o-2.35=110^o.\)
Bạn học Định lý Pytago chưa ??