C/M:A=\(\frac{n^3}{24}+\frac{n^2}{8}+\frac{n}{12}\) là số nguyên \(\forall\)n chẵn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{n}{12}+\frac{n^2}{8}+\frac{n^3}{24}=\frac{2n+3n^2+n^3}{24}=\frac{n^3+2n^2+n^2+2n}{24}=\frac{n^2\left(n+2\right)+n\left(n+2\right)}{24}\)
\(=\frac{\left(n^2+n\right)\left(n+2\right)}{24}=\frac{n\left(n+1\right)\left(n+2\right)}{24}\)
Do n chẵn nên n=2k (k nguyên) => n+2=2k+2=2(k+1) => n(n+2)=2k.2(k+1)=4k(k+1)
k(k+1) là 2 số nguyên liên tiếp, trong đó có ít nhất 1 số chẵn nên k(k+1) chia hết cho 2 => 4k(k+1) chia hết cho 8
=>n(n+2) chia hết cho 8=>n(n+1)(n+2) chia hết cho 8 (1)
Mặt khác n;n+1;n+2 là 3 số nguyên liên tiếp nên trong đó có ít nhất 1 số chia hết cho 3 (tự chứng minh hoặc xem cách chứng minh trên mạng nhé)
=>n(n+1)(n+2) chia hết cho 3 (2)
Từ (1) và (2) và (3;8)=1 => n(n+1)(n+2) chia hết cho 3.8=24
=>\(\frac{n\left(n+1\right)\left(n+2\right)}{24}\) nguyên => đpcm
a, Ta có: \(\frac{n^5}{5}+\frac{n^3}{3}+\frac{7n}{15}=\frac{n^5-n}{5}+\frac{n}{5}+\frac{n^3-n}{3}+\frac{n}{3}+\frac{7n}{15}\)
\(=\frac{n^5-n}{5}+\frac{n^3-n}{3}+n\)
Chứng minh \(n^5-n⋮5\Rightarrow\frac{n^5-n}{5}\in Z\)
\(n^3-n⋮3\Rightarrow\frac{n^3-n}{3}\in Z\)
\(\Rightarrow\frac{n^5-n}{5}+\frac{n^3-n}{3}+n\in Z\)
=> Đpcm
b, Tương tự dùng tính chất chia hết
c) +) giả sử k chẵn--> k2 chẵn --> k2-k+1 lẻ
+) giả sử k lẻ --> k2 lẻ --> k2-k+1 lẻ
==> ko tồn tại k thuộc Z thỏa đề
d) sai
vì ví dụ x=-4<3 nhưng x2=(-4)2=16>9(ko thỏa đề)
Vì n chẵn nên n có dạng n = 2k (k thuộc Z)
\(A=\frac{2.k}{12}+\frac{4.k^2}{8}+\frac{8k^3}{24}=\frac{k}{6}+\frac{k^2}{2}+\frac{k^3}{3}=\frac{k}{6}+\frac{3.k^2}{6}+\frac{2.k^3}{6}=\frac{2.k^3+3.k^2+k}{6}\)
\(=\frac{k\left(2k^2+3k+1\right)}{6}=\frac{k\left[2k\left(k+1\right)+\left(k+1\right)\right]}{6}=\frac{k\left(k+1\right)\left(2k+1\right)}{6}=\frac{k\left(k+1\right)\left[\left(k+2\right)+\left(k-1\right)\right]}{6}\)
\(=\frac{k\left(k+1\right)\left(k+2\right)}{6}+\frac{\left(k-1\right)k\left(k+1\right)}{6}\)
nhận xét k; k+1; k+2 là 3 số nguyên liên tiếp nên tích của chúng chia hết cho 6 => \(\frac{k\left(k+1\right)\left(k+2\right)}{6}\)nguyên
tương tự: k-1; k; k+1 là 3 số nguyên liên tiếp nên tích của chúng chia hết cho 6=> \(\frac{\left(k-1\right)k\left(k+1\right)}{6}\)nguyên
vậy A nguyên
+ Ta có : \(n^5-n=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)
+ \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)là tích 5 số nguyên liên tiếp
\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\)
\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)⋮5\)
\(\Rightarrow n^5-n⋮5\)
+ \(n^3-n=\left(n-1\right)n\left(n+1\right)⋮3\)
\(B=\frac{n^5-n}{5}+\frac{n^3-n}{3}+\frac{7n}{15}+\frac{n}{5}+\frac{n}{3}\)
\(=\frac{n^5-n}{5}+\frac{n^3-n}{3}+\frac{15n}{15}\)
=> B là số nguyên
\(A=\frac{n^5+10n^4+35n^3+50n^2+24n}{120}\) \(=\frac{n\left[n^3\left(n+1\right)+9n^2\left(n+1\right)+26n\left(n+1\right)+24\left(n+1\right)\right]}{120}\)
\(=\frac{n\left(n+1\right)\left[n^3+9n^2+26n+24\right]}{120}\) \(=\frac{n\left(n+1\right)\left[n^2\left(n+2\right)+7n\left(n+2\right)+12\left(n+2\right)\right]}{120}\)
\(=\frac{n\left(n+1\right)\left(n+2\right)\left(n^2+7n+12\right)}{120}\) \(=\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)}{120}\)
+ \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)\)là tích 5 số nguyên liên tiếp\
\(\Rightarrow\left\{{}\begin{matrix}n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮3\\n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮5\end{matrix}\right.\) (1)
+ trong 5 số nguyên liên tiếp tồn tại ít nhất 2 số chẵn liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮8\) ( do tích 2 số chẵn liên tiếp chia hết cho 8 ) (2)
+ Từ (1) và (2) => \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮120\)
=> đpcm
+ \(C=\frac{n^3+3n^2+2n}{24}=\frac{n\left(n+1\right)\left(n+2\right)}{24}\)
+ \(n\left(n+1\right)\left(n+2\right)\) là tích 3 số nguyên liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\) (3)
+ n và n + 2 là 2 số chẵn liên tiếp
\(\Rightarrow n\left(n+2\right)⋮8\Rightarrow n\left(n+1\right)\left(n+2\right)⋮8\) (4)
+ Từ (3) và (4) \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮24\)
=> C là số nguyên
Đặt \(n=2k\)
\(\Rightarrow A=\frac{8k^3}{24}+\frac{4k^2}{8}+\frac{2k}{12}=\frac{k^3}{3}+\frac{k^2}{2}+\frac{k}{6}=\frac{2k^3+3k^2+k}{6}=\frac{k\left(2k^2+3k+1\right)}{6}=\)
\(=\frac{k\left(k+1\right)\left(2k+1\right)}{6}\)
A nguyên khi \(k\left(k+1\right)\left(2k+1\right)⋮6\) Tức là \(k\left(k+1\right)\left(2k+1\right)\) đồng thời chia hết cho 2 và 3
+ Với k chẵn \(\Rightarrow k⋮2\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮2\)
+ Với k lẻ \(\Rightarrow k+1⋮2\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮2\)
\(\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮2\forall k\in N\)
+ Nếu \(k⋮3\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮3\)
+ Nếu k chia 3 dư 1 \(\Rightarrow k-1⋮3\Rightarrow2k-2⋮3\Rightarrow2k-2+3=2k+1⋮3\)
+ Nếu k chia 3 dư 2 \(\Rightarrow k+1⋮3\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮3\)
\(\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮3\forall k\in N\)
\(\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮6\forall k\in N\)
Điều này chứng tỏ rằng A là số nguyên với mọi n chẵn