So sánh x = 20192020 + 1 / 20192019 + 1 và y = 20192019 + 2020 / 20192018 + 2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2018 2019 + 2019 2020 > 2018 2020 + 2019 2020 = 2018 + 2019 2020 > 2018 + 2019 2019 + 2020 = B
Vậy A > B
Ta có:
\(\frac{2018+2019}{2019+2020}=\frac{2018}{2019+2020}+\frac{2019}{2019+2020}\)
\(\frac{2018}{2019}>\frac{2018}{2019+2020}\)
\(\frac{2019}{2020}>\frac{2019}{2019+2020}\)
Vậy: A>B
VÌ 20192019+120192020 +1=140384040 >20192018+120192019 =140384038 nên A>B
Bài 2:
Ta có: \(11^{1979}< 11^{1980}=1331^{660}\)
\(37^{1320}=37^{2\cdot660}=1369^{660}\)
mà \(1331^{660}< 1369^{660}\)
nên \(11^{1979}< 37^{1320}\)
NX: VT ≥ 0 nên VP = 2020x – 2020 ≥ 0 ó x ≥ 1
Khi đó x − 1 2020 > 0 , x − 2 2020 > 0 , ... , x − 2019 2020 > 0
Phương trình trở thành
x − 1 2020 + x − 2 2020 + x − 3 2020 + ... + x − 2019 2020 = 2020 x − 2020
ó 2019x - ( 1 2020 + 2 2020 + ... + 2019 2020 ) = 2020x – 2020
ó 2019x - 1 + 2 + 3 + ... + 2019 2020 = 2020x – 2020
ó 2019x - ( 1 + 2019 ) .2019 2.2020 = 2020x – 2020
ó 2019x - 2019/2 = 2020x – 2020
ó 2020 - 2019/2 = 2020x – 2019x
ó x = 2021/2 (TM)
Vậy phương trình có nghiệm x = 2021/2
Đáp án cần chọn là: A
\(x=\frac{2019^{2020}+1}{2019^{2019}+1}>\frac{2019^{2020}+1+2018}{2019^{2019}+1+2018}=\frac{2019^{2020}+2019}{2019^{2019}+2019}=\frac{2019\left(2019^{2019}+1\right)}{2019\left(2019^{2018}+1\right)}=\frac{2019^{2019}+1}{2019^{2018}+1}\)(1)
\(y=\frac{2019^{2019}+2020}{2019^{2018}+2020}< \frac{2019^{2019}+2020-2019}{2019^{2018}+2020-2019}=\frac{2019^{2019}+1}{2019^{2018}+1}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow x>y\)