( x + 2 ).( y - 3 ) = 5 tìm x và y so x va y biet
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng t/c của dãy tỉ số bằng nhau ta có : \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}\) mà x+y = 16 ⇒ \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{16}{8}=2\) ⇒ x = 3.2 = 6 và y = 5.2 = 10 Vậy x = 6 và y = 10
\(\dfrac{x}{3}=\dfrac{y}{5}và\dfrac{x+y}{3+5}=\dfrac{16}{8}=2\)
* \(\dfrac{x}{3}=2=>x=3.2=6\)
*\(\dfrac{y}{3}=2=>y=5.2=10\)
Bài 2:
Ta có: \(\left.\begin{matrix} \frac{x}{4} = \frac{y}{5} & & \\ \frac{y}{5} = \frac{z}{2} & & \end{matrix}\right\}\)
=> \(\frac{x}{4} = \frac{y}{5} = \frac{z}{2}\)
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4} = \frac{y}{5} = \frac{z}{2} = \frac{x - y + z}{4 - 5 + 2}= \frac{98}{1}= 98\)
=> x = 98 * 4 = 392
y = 98 * 5 = 490
z = 196
Vậy x = 392, y = 490, z = 196
Bài 3:
Gọi x,y lần lượt là số cây trồng của lớp 7A, 7B
Theo đề bài ta có: \(\frac{x}{4} = \frac{y}{5}\) và y - x = 12
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4} = \frac{y}{5}= \frac{y - x}{5 - 4}= \frac{12}{1}= 12\)
=> x = 12 * 4 = 48
y = 12 * 5= 60
Vậy lớp 7A trồng 48 cây
.......lớp 7B trồng 60 cây
Câu 1:
a: \(\Leftrightarrow2x^2-x-5< x^2+x-6\)
\(\Leftrightarrow x^2-2x+1< 0\)
hay \(x\in\varnothing\)
b: \(\Leftrightarrow x^2-5x-x+4>0\)
\(\Leftrightarrow x^2-6x+4>0\)
\(\Leftrightarrow\left(x-3\right)^2>5\)
hay \(\left[{}\begin{matrix}x>\sqrt{5}+3\\x< -\sqrt{5}+3\end{matrix}\right.\)
\(\frac{x}{2}=\frac{y}{-5}\)
áp dụng t\c của dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)
=> x = -1.2 = -2
y = -1.(-5) = 5
vậy_
X/2=Y/5
Ap dung t/c cua day ti so bang nhau ta co
x/2=Y/-5=x-y/2-(-5)=-7/7=-1 x=-1×2=-2. Y= -1×-5=5. Vay x=-2. y=5
-2/x=y/3
=> -2.3 = xy
xy= -6
Mà x>0>y => x là số nguyên âm còn y là số nguyên dương
Lập bảng ( cái này bn tự lâp)
=> Các cặp số nguyên x,y là: x=-2,y=3 ; x= -3,y=2; x=-1,y=6 ; x=-6,y= 1
Do x-y = 4 => x= 4+y
thjays x=4+y vào x-3/y-2=3/2, có:
x-3/y-2=3/2 = 4+y-3/y-2 = 3/2 = y+1/y-2=3/2
=> 2(y+1)= 3(y-2)
2y+2 = 3y-6
3y-2y = 2+6
y=8
thay y= 8 vào x=4+y, có:
x= 4+ 8 = 12
vạy x=12; y=8
(x+2)(y-3) = 5
=> x+2 và y-3 thuộc Ư(5) = { -1; -5; 1; 5 }
=> bảng sau :
x+2 | -1 | -5 | 1 | 5 |
y-3 | -5 | -1 | 5 | 1 |
x | -3 | -7 | -1 | 3 |
y | -2 | 2 | 8 | 4 |
(x+2).(y-3)=5
Vì Ư(5)={-1;-5;1;5} mà xy là nhiều số nguyên nên (x+2).(y-3) là một số nguyên
Do đó[x+2=-5 [x=
[y-3=5 => [y=2
[
[
Do \(7x=3y\)\(\Rightarrow\frac{x}{3}=\frac{y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\) ( do x - y = 16 )
Khi đó:
\(\frac{x}{3}=-4\)\(\Rightarrow x=\left(-4\right)\cdot3=-12\)
\(\frac{y}{7}=-4\)\(\Rightarrow y=\left(-4\right)\cdot7=-28\)
Vậy x = -12 ; y = -28
Bài làm
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{y-x}{5-2}=\frac{42}{3}=14\)
Do đó: \(\hept{\begin{cases}\frac{x}{2}=14\\\frac{y}{5}=14\end{cases}\Rightarrow\hept{\begin{cases}x=28\\y=70\end{cases}}}\)
Vậy x = 28; y = 70
# Học tốt #
\(\frac{x}{2}=\frac{y}{5}\)=>5x=2y
=>2y-5x=0
=>2y-2x-3x=0
=>2(y-x)=3x
=>2.42=3x
=>3x=84=>x=26,y=68